
c©2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must
be obtained from the IEEE.



ORIS: a tool for state-space analysis of real-time preemptive systems

G.Bucci, L.Sassoli, E.Vicario

Dipartimento Sistemi e Informatica - Università di Firenze, Italia
E-mail {bucci,sassoli,vicario}@dsi.unifi.it

Abstract

Formal methods based on state-space enumeration, such
as Timed Automata and Time Petri Nets (TPN), have been
proposed for designing and validating reactive real-time
systems. The great expressiveness of these methods is coun-
terbalanced by the increased complexity of the analysis,
which may grow exponentially. Furthermore, the enumer-
ated state-space needs to be inspected to identify critical
behaviors with respect to sequencing and timing require-
ments. This naturally leads to the implementation of tools
supporting the different stages of the development process.

In this paper we present Oris, an environment for build-
ing, simulating, analyzing and validating complex real time
systems specified in terms of an extended TPN formalism,
named Preemptive Time Petri Nets. Oris includes not only
the state-space enumeration engine, but also a number of
modules which ease user interaction, and make it usable
also by a designer with no specific experience in formal
modelling.

1 Introduction

In the practice of real time systems, the problem of log-
ical sequencing and quantitative timing of events is usually
formulated under the assumption of a number of hypothe-
ses on the structure of the tasking set. These assumptions
simplify the complexity of sequencing and enable analyti-
cal techniques for estimating the worst-case response time
in low-order polynomial complexity. The theory of Rate
Monotonic scheduling is a notable example of the approach
[13]. This theory can also deal with issues such as inter-task
dependencies, due to mutual exclusion on shared resources,
and to dataflow precedence relations [15]. However it does
not consider non-deterministic computation times; sporadic
tasks and/or tasks with mutual dependencies in the time of
release; multiple processors.

Under these conditions, predictability in both sequenc-
ing and timing may become difficult enough to motivate the

adoption of state-space analysis methods based on models
such as Timed Automata [1] [5] [11], or Time Petri Nets
[14] [6] [16] [8], all of which pay a price in terms of com-
plexity for the greater expressiveness.

For all these models, the semantics of the system is de-
fined in terms of state transition rules driving the evolu-
tion of logical locations and of a set of quantitative clocks.
While the former are discrete, the latter take values in dense
domains. According to this, to obtain a discrete represen-
tation, the state-space must be covered through equivalence
classes each characterized by a time domain collecting a
dense variety of clock values [1] [5] [11] [6] [16].

Following these approaches, the validation process re-
quires the enumeration of the state-space of the model.
In practice, this is done through an analysis engine capa-
ble of generating reachability relations among state classes
of a model. The enumerated state-space can be inspected
through model checking techniques, in order to identify
critical behaviors with respect to sequencing and timing re-
quirements which, in turn, can be formulated as temporal
logic formulae.

A number of tools [5] [11] have been proposed based on
Timed Automata. In our perspective, the Times tool [3] has
particular relevance, since it attempts to bridge scheduling
theory and automata-theoretic approaches to system mod-
elling and analysis, supporting the treatment of tasks with
asynchronous and dense release times, running under the
most practiced scheduling disciplines. However, the under-
lying analysis still rules out nondeterministic computation
times taking values within dense intervals.

In [16], the Time Petri Net model (TPN) has been
adopted as the formalism to deal with reactive systems.
The basic model has been improved in [8], so as to en-
compass preemptive scheduling. The resulting model has
been named Preemptive Time Petri Nets (PTPN). This has
led to the development of an analysis engine named Oris,
which, in the last years, has been supplemented with a num-
ber of tools supporting the user throughout the design pro-
cess: from the initial stage of net specification to the final
stage of validation. As a result, we now use the name Oris to

Proceedings of the First International Conference on the Quantitative Evaluation of Systems (QEST’04) 
0-7695-2185-1/04 $ 20.00 IEEE 



denote the entire environment. Oris allows representation of
complex tasking models scheduled by priority on multiple
processors, including periodic and sporadic tasks, with syn-
chronization on exclusive resources and precedence con-
straints, with nondeterministic computation times. In this
paper, we give a description of the Oris environment, refer-
ring to a case study which is thoroughly expounded through
a complete design cycle.

The paper is organized as follows. Section 2 describes
the functionalities of the various modules of Oris, as well as
their interactions. Section 3 illustrates how these modules
support the modelling and validation process referring to
the case study of a real-time system which includes com-
plexity factors that deny its treatment through analytical
techniques. Section 4 presents the results of analysis. Con-
clusions are drawn in Section 5.

2 Description of the Toolset

ORIS comprises a rich set of tools for building, simulat-
ing, analyzing and validating Time Petri Net models.

Figure 1 schematizes the validation process in the style
of a dataflow diagram. Each bubble represents a phase of
the process and reports the name of the module that supports
it. The figure also shows the data structures that are gener-
ated at different stages. It does not present the input/output
interactions with the user, since these are intrinsically asso-
ciated with the modules that accept user data and/or present
results.

A typical design cycle starts with the user specifying the
tasking set. This is done with the Timelines Editor; alter-
natively, the user can directly specify a TPN model through
the TPN Editor. Once the model has been built, the ana-
lyst can either simulate or analyze it. Simulation is in two
forms: the first consists of animating the model, the second
in performing a conventional batch simulation to produce a
file of statistic data. The analysis is carried out through the
TPN Analyzer engine, which generates a graph representing
reachability relations among state classes. Correctness ver-
ification is carried out through a model checker which finds
out all the symbolic traces that are compliant with both log-
ical sequencing and quantitative timings specified through
temporal logic formulae. These, in turn, can be laid down
through the interactive graphic editor named Formed.

We now give a more detail description of the modules
contained in the Oris environment. In the following dis-
cussion, we use the acronym TPN to denote both the basic
model and the extended one.

Timelines Editor: A graphical interface permit-
ting intuitive description of complex tasking sets in the
timeline formalism. It automatically generates TPN

models encoded in XML format. A relevant feature of
this module is the automatic generation of the Petri net
corresponding to the timeline-style description of the
tasking set. This permits use of formal methods even
to those designers that have no specific experience in
using them.

TPN Editor: As an alternative to the previous mod-
ule, the TPN Editor supports direct model construction
in the TPN formalism. The specified models are en-
coded in the same format used by the Timelines Editor.
As a result, a TPN model can be shared between Time-
lines Editor and TPN Editor, thus permitting the round
trip mechanism between the two modules (Figure 1).

The TPN Editor always accepts a TPN model gener-
ated by the Timelines Editor, but the opposite is not al-
ways true, since a TPN model can not always be trans-
lated into a timeline description.

TPN Animator: Supports the simulation of TPN
models by playing the token-game, i.e. moving tokens
on the firing of transitions. It provides a representation
of the overall state of the net by highlighting the state
of every transition.
Animation can proceed in continuous mode or step-by-
step. In the first case, transition firing times are chosen
randomly by the TPN Animator within the firing in-
terval. In the second case the user has control over
transition execution times.
It is possible to save the log of all transition firing
events and related token distribution.

TPN Simulator: Performs simulation in batch mode.
The result of simulation is a file of statistic data such
as: token distribution, transition firing sequences, and
other measures of interest.

TPN Analyzer: The core of the entire system. It
has the duty of building the reachability graph of TPN
models. Since TPNs have a dense time semantics,
in order to obtain a discrete enumeration of the state-
space, individual states are collected into state classes
each characterized by a logical location (i.e. a mark-
ing) and by a dense variety of clock assignments [7].
Dense clock domains are efficiently encoded into a
set of linear inequalities each composed of two terms.
This kind of encoding, usually referred to as Difference
Bounds Matrix (DBM) [12], permits representation of
classes with space complexity O(N2) (where N stands
for the number of active clocks, i.e. the number of en-
abled transitions).

Proceedings of the First International Conference on the Quantitative Evaluation of Systems (QEST’04) 
0-7695-2185-1/04 $ 20.00 IEEE 



Reachability Graph

TPN Model

Model Editing
-TPN Editor

System Specification
-Timelines Editor

Specification of
Correctness Properties
-Formed

Animation
-TPN Animator

Simulation
-TPN Simulator

Temporal Logic
Formulae

Correctness Verification
-Model Checker Critical Behaviors

Analysis
-TPN Analyzer

Trace Inspection
-Traceviewer

Simulation Data

Figure 1. The different phases of the specification-validation process represented in the style of a
dataflow diagram. Each phase is labelled with the name of the Oris module that supports it.

Figure 2. A screenshot of the ORIS environment.

Proceedings of the First International Conference on the Quantitative Evaluation of Systems (QEST’04) 
0-7695-2185-1/04 $ 20.00 IEEE 



Their manipulation amounts to an all shortest path
which is efficiently solved in time O(N3) [12], or even
O(N2) when it is repeatedly applied within an enumer-
ation algorithm[16].
When the basic TPN model is extended to deal with
preemption, state-space analysis involves clocks that
can advance with non-uniform rate across different
logical locations, so as to represent a computation that
can be suspended and resumed in subsequent stages
of the execution. This requires enumeration of com-
plex time domains, which can no longer be encoded
as DBMs, changing the nature of time and space com-
plexity. In order to avoid the exponential complexity
in the derivation and representation of state classes,
the tightest conservative-approximate DBM represen-
tation of the state-space of the model is derived using a
refinement of the approximation proposed in [10], for
which reachability has been proven to be not decid-
able. This implies that there is no guarantee that enu-
meration of a bounded PTPN model always terminates
(thought we always experienced termination).

The approximation may introduce a number of false
behaviors, which are not congruent with the seman-
tics of the model. However, the approximate repre-
sentation of the state-space is still sufficient to iden-
tify all the traces that can be critical with respect to
requirements pertaining to the logical sequencing or to
the quantitative timing of events. Moreover, the con-
straints encoded in the classes visited by any critical
trace are sufficient to re-construct the exact set of tim-
ings that are feasible for the trace itself, thus opening
the way to the clean-up of false behaviors and to the
interactive exploration of feasible timings [8]. This
technique is implemented through a specific module,
called Tracelyzer (not shown in Figure 1).

Formed: A graphical interface for editing temporal
logic formulae. We have developed this interactive tool
to ease the composition of clauses in temporal logic,
avoiding the complexity of its syntax. We adopted
a visual formalism which transposes the formal tex-
tual syntax into intuitive visual representation. This
reduces usage effort and error frequency, increasing
the usability of formal methods, and improving their
verification power through a potentially richer user in-
volvement.

Model Checker: Supports correctness verification
with respect to a time-linear variant of Real Time Tem-
poral Logic (RTTL) [2]. The Model checker works on
the reachability graph generated by the TPN Analyzer.
An original aspect of this model checker is the capabil-

ity to find not only a counterexample, but all the sym-
bolic traces (we call them witnesses) which satisfy a
given formula. Each state class is labelled with the set
of witnesses which, starting from the class, satisfy the
formula. In fact, we are not only interested in knowing
wether or not a given property is verified, but also in
giving a quantitative measure of how the system sat-
isfies the property. For instance, when referring to a
schedulability problem, we may be interested in know-
ing whether or not a given deadline is met, as well as
determining which is the worst completion time within
the deadline itself.

In the case of preemptive models, since the enumer-
ation analysis may introduce false behaviors and ap-
proximate time profiles, the identified traces can be
cleaned up by Tracelyzer.

Trace Viewer: Supports the visualization of the
traces extracted by the model checker. The dense vari-
ety of timings that can be applied to a trace results from
the combination of a number of non-deterministic vari-
ables, representing the dwelling times in the classes
along the trace itself [8]. Each of these variables ranges
within a minimum and a maximum value and may de-
pend on each other. The Trace Viewer module en-
ables interactive exploration of these dependencies for
any trace identified in the state class graph through the
model checker.

Figure 2 shows a screenshot which includes most of
Oris components at work. The content of the various
windows is explained in the sequel.

3 Petri Net Model Creation, Analysis and
Validation

In this section we introduce the reader to the usage of
Oris, by guiding him/her in a tour starting with the creation
of a TPN model, going through simulation and analysis, and
terminating with model validation. To this end, we develop
a case study of real-time system which includes complex-
ity factors that deny its treatment through analytical tech-
niques.

3.1 System specification and Model Editing

We consider a system comprised of four processes P1,
P2, P3 and P4, internally structured as sequences of com-
putation steps, each characterized by a minimum and max-
imum computation time and pre-allocation on two proces-
sors cpu1 and cpu2. The initial specification is as follows:

Proceedings of the First International Conference on the Quantitative Evaluation of Systems (QEST’04) 
0-7695-2185-1/04 $ 20.00 IEEE 



Figure 3. Screenshot of the Timelines Editor representing the tasking set of the case study.

Figure 4. The PTPN model reworked through the TPN Editor.

Proceedings of the First International Conference on the Quantitative Evaluation of Systems (QEST’04) 
0-7695-2185-1/04 $ 20.00 IEEE 



• P1 is periodic with period of 5 time units, it runs at pri-
ority level 3, and is composed of two sequential steps;
the second one requires semaphore mutex1 to enter a
critical section. P1 runs on cpu1.

• P2 is sporadic, with a minimum inter-arrival time of 10
time units, it runs at priority level 2. P2 runs on cpu1.

• P3 is periodic with period of 15 time units, it runs at
priority level 1, and it is composed of three sequential
steps, the second one requires control over semaphore
mutex1. P3 runs on cpu1.

• P4 is a periodic process with period of 15 time units
running at priority level 3. It is composed of two se-
quential steps. P4 runs on cpu2.

All steps, except the second part of process P4, have nonde-
terministic computational times. With regard to priorities,
the greater the number the higher the priority.

Usually, tasking sets are described through timeline
schemas, i.e. a visual formalism that represents aspects
such as: (i) the kind of task-releases (sporadic/recurring);
(ii) computational times of each task in terms of best and
worst completion time; (iii) priorities; (iv) semaphore syn-
chronization [9]. In Oris this is done through the Time-
lines Editor. For example, in Figure 3 window a), process
P1 is divided into 2 sequential steps with non-deterministic
computation times. In the graphic view, each step is rep-
resented by a segment whose length corresponds to the du-
ration of the step. This is divided into two parts: the first
(heavy grey) represents the minimum computation time; the
second (light grey) accounts for the difference between the
maximum and the minimum completion time. Semaphore
acquisition and release are schematized by two circles em-
bracing the step.

The user can specify the tasking either by directly ma-
nipulating the timeline representation in window a) or by
providing tasks parameters in a textual manner in windows
c) and d) of Figure 3. Whatever the case, the system au-
tomatically generates on the fly the corresponding PTPN
model in window b).

As mentioned above the user can also directly build a
PTPN model using the TPN Editor, or use the TPN Editor to
improve a PTPN model translated from a timeline specifica-
tion. For instance, referring to our example, we started from
the model of Figure 3, corresponding to the initial specifica-
tion, and then we extended it so that P1 is given the ability
to optionally perform an additional step, according to re-
ception of a message from process P2. The concept of con-
ditional execution is not supported by timeline schematiza-
tion, therefore the desired extension has been applied using
the TPN editor on the PTPN model generated by the Time-
lines Editor. Furthermore we have also imposed that the

additional step acquires semaphore mutex2 to exclusively
access a critical section with respect to process P4.

The resulting final PTPN model is shown in Figure 4:
process P1 is represented by transitions t11 through t16.
Transition t11 releases tasks periodically; t12 accounts for
the first computation step; transition t14 and HandleMsg
account for the computation step performed in the critical
section ruled by mutex1. This path is followed when a
message from process P2 is pending (i.e. a token in place
Msg). Transition t13 is taken to skip the above path if no
message is pending. The remaining step is modeled through
transitions t15 and t16; t15 acquires semaphore mutex1, t16
accounts for the nondeterministic computation and for the
release of the semaphore.

The other processes are modeled in a similar manner.
Note that transition t21 has a nondeterministic timing so as
to account for a sporadic release with minimum interarrival
time of 10 time units.

3.2 Simulation and Analysis

Once the model has been built, it can be animated
through the TPN Animator, the module which moves tokens
by playing the so called “token game”. Transitions are fired
based on the model semantics [8]. Figure 5 is a screenshot
of the animator. Window a) represents the dynamic evolu-
tion of the net over time. Appropriate colors have been cho-
sen to identify conditions such as transition enabled, transi-
tion firing, and so on. Window b) reports the lists of firable,
enabled and suspended transitions. Window c) lists all the
events that have occurred and related times. The animator
is helpful for a first understanding of model behavior; a fur-
ther help comes from conventional batch simulation, which
produces statistic data that can be analyzed off-line.

However, simulation does not guarantee correctness.
This can be achieved only through the exhaustive analysis
of the state space of the model.

3.3 Validation of the model

Referring to our tasking set, consider, for instance, the
following formula:

♦(p13 �= 0 ∧ (p21 �= 0 ∧ p33 �= 0))

stating that a state will eventually be reached in which the
marking has a non null number of tokens in all three places
p13, p21, and p21. When this condition is true, the system
incurs in a priority inversion [9]: the high-priority process
P1 is blocked on semaphore mutex1 but, the low-priority
process P3, which holds the semaphore (a token in p33), is
suspended by the mid-priority process P2, which is comput-
ing (a token in p21). This is a particularly simple formula,

Proceedings of the First International Conference on the Quantitative Evaluation of Systems (QEST’04) 
0-7695-2185-1/04 $ 20.00 IEEE 



Figure 5. The TPN Animator running on the PTPN model of the example.

Figure 6. The Formed module at work: the user is graphically building the formula ♦(p13 �= 0 ∧ (p21 �=
0 ∧ p33 �= 0)).

Proceedings of the First International Conference on the Quantitative Evaluation of Systems (QEST’04) 
0-7695-2185-1/04 $ 20.00 IEEE 



but, in general, temporal logic may lead to very complex
clauses.

To simplify the composition of temporal logic formulae,
Oris provides the graphic editor Formed. For instance, the
above formula is constructed in a graphical manner as in
Figure 6. Note that a toolbar of the editor provides a set of
logical and temporal operators to ease expression composi-
tion.

By using Formed, the designer can establish any number
of formal conditions. These are then passed to subsequent
validation phases. The Model Checker takes these formulae
to label the nodes of the timed class state-space with the set
of witnesses which satisfy them. Since witnesses are in the
form of symbolic traces, Oris was provided with a Trace
Viewer to selectively display them and to explore the inter-
dependencies among variables representing dwelling times
in the classes visited along the traces.

The part above the horizontal time axis, in window a)
of Figure 7 and Figure 8, visualizes the range of variability
of each clock as a timeline. The range of variability can
be repeatedly restricted through the introduction of a lock
which forces any clock to take a predefined value within
its acceptable range: thus reducing the range of variability
of the profile due to dependencies among clocks. To make
this effect evident, the range of variability is drawn with
different textures, so as to distinguish the maximum range
of variability (dashed line) from the range which is feasible
under the locks that have been added (solid line).

The lower part of the main window (part b) of Figure 7
and Figure 8, visualizes a feasible trace timing which satis-
fies all the locks imposed by the user. For each transition
in the trace, the diagram shows a timeline which makes ev-
ident the periods in which the clock has been progressing
(solid line) or suspended (dashed line). The end of the line
indicates whether the transition has fired (arrow termina-
tion) or has been disabled (rounded termination).

In general, even after the introduction of a number of
locks, the trace may still admit a dense infinity of tim-
ings. In this case, non-determinism is reduced automati-
cally according to different possible heuristics: (i) local lat-
est heuristic constructs the timing by always selecting the
maximum dwelling time in each visited class; (ii) global
latest selects a timing which maximizes the time of execu-
tion of the last event in the trace. Local earliest and global
earliest work in a similar manner.

The deterministic timing selected for the trace induces a
partition of the temporal axis, which is marked by vertical
lines at transition firings. Regions between two subsequent
vertical lines correspond to the classes visited by the trace.

4 Putting it all together

Enumeration of the state-space of the model shown in
Figure 4 produces a class graph with 5247 classes. To
carry out schedulability analysis, the class graph has been
inspected through the Model Checker, by selecting all the
traces starting with the release of a process and terminat-
ing with its completion. This has led to the identification of
3879, 1777, 17718, and 4072 traces for processes P1, P2,
P3 and P4, respectively. Timeliness analysis through Trace-
lyzer has shown that all traces of processes P1, P2, and P4

are actually feasible. Whereas, 1304 traces for process P3

are not feasible under any timing. Timeliness analysis also
reports an exact worst case response time equal to 8.1, 5,
12.4, and 2.8, for processes P1, P2, P3, and P4, respec-
tively. This indicates that the high-priority process P1 may
miss its deadline.

Inspection of the behaviors which attain the worst re-
sponse time for process P1 makes evident the occur-
rence of priority inversion in the interval [70,90]: in
fact while the high-priority process P1 is blocked on the
semaphore mutex1, the low-priority process P3, holding
the semaphore, is suspended by the mid-priority process P2

(see Figure 7). To overcome the problem, the priority of the
computation of process P3 in the critical section (i.e. tran-
sition t34) is boosted to that of process P1, according to a
priority ceiling emulation protocol.

State-space analysis of the model modified according to
this protocol produces a class graph with 5026 classes with
3707, 1738, 18024, and 4080 traces for processes P1, P2,
P3 and P4, respectively. Timeliness analysis identifies 1124
false behaviors for process P3 and derives tight worst case
response times equal to 4.3, 5.3, 12.4, and 2.8 time units for
processes P1, P2, P3 and P4, respectively.

Finally, let us explain how Oris can be used to detect
subtle dependencies among process timings. Consider pro-
cesses P1 and P4. We can show that early completion of
process P4 (running on cpu2) delays the starting time of the
third step of process P1 (running on cpu1). To this end,
through the Trace Viewer module, we identify the condi-
tions yielding the worst case response time for process P1,
by forcing its completion event (the firing of t16) at its latest
possible time (i.e. by locking the clock of transition t16 to
be equal to 71, see Figure 8). Under this conditioning, com-
pletion of the first step of P4 (transition t42) is restricted to
take a single deterministic value (i.e. the clock of transition
t42 is restricted to fire at time 10, see Figure 8, while its ini-
tial range of variability was [6,12], as reported in Figure 4).
In other words, an early completion can change the relative
starting time of computations on different processors giv-
ing rise to a well-known anomaly in the theory of resource
reclaiming for real time scheduling [4] on multiprocessor
systems.

Proceedings of the First International Conference on the Quantitative Evaluation of Systems (QEST’04) 
0-7695-2185-1/04 $ 20.00 IEEE 



Figure 7. A trace incurring in a priority inversion among processes P1, P2 and P3. In the interval
[70,90] the high-priority process P1 is blocked on the semaphore mutex1 (the fictitious transition Wait-
on-mutex1 progressing); the low-priority process P3 holding the semaphore (transition t34 enabled)
is suspended by the mid-priority process P2 (transition t22 progressing).

Figure 8. Visualization of the conditions which enable the worst case completion time for process P1.

Proceedings of the First International Conference on the Quantitative Evaluation of Systems (QEST’04) 
0-7695-2185-1/04 $ 20.00 IEEE 



It must be remarked that the worst case response time
of P1, i.e 71 time units, can be observed only when the first
step of P4 takes exactly 10 time units. It cannot be observed
if the computation time of the first step of P4 is replaced
either with the worst case or through the best case comple-
tion time. In other words, characterizing the task set only
through worst computation times is not always sufficient to
detect worst case timing of the overall system.

5 Conclusions

We have described Oris, a tool for building, simulating,
analyzing and validating complex real time systems. The
core component of Oris is the analysis engine which per-
forms state-space enumeration based on the theory of Pre-
emptive Time Petri Nets.

The semantics of PTPNs gives Oris a great expressive
power, which permits the treatment of practical schedula-
bility problems. As a result, Oris can be used to model
complex tasking sets which include different release poli-
cies such as recurring, sporadic and one shot. It per-
mits modelling of inter-task dependencies due to the tim-
ing of releases, to mutual exclusion on shared resources and
dataflow precedence relations. It also permits modelling of
internal sequencing of tasks and nondeterministic compu-
tation times. This applies to both the case of single and
multiple processors systems.

The analysis engine has been implemented in C++, while
almost all the remaining modules have been implemented
in Java. Oris can be obtained by contacting the authors.
Being a research tool, the environment undergoes continu-
ous development. We are currently extending its capabili-
ties to deal with reactive real-time systems, such as robotic
workcells, which, in addition to sequencing and timing con-
straints, also include spatial and kinematics aspects.

References
[1] R.Alur, D.L.Dill, “Automata for Modeling Real-Time

Systems,” 17th ICALP, 1990.

[2] R. Alur, T. A. Henzinger, “Logics and Models of Real
Time: A Survey,” LNCS, Vol. 600, pages. 74-106,
1992.

[3] T.Amnell, E.Fersman, L.Mokrushin, P.Pettersson,
W.Yi, “Times - A Tool for Modelling and Implemen-
tation of Embedded Systems,” LNCS, Vol.2280, pages
460-464, 2002.

[4] B.Andersson, J.Jonsson, “Preemptive multiprocessor
scheduling anomalies,” Proceedings of IPDPS 2002,
pages: 12-19, 2002

[5] J.Bengtsson, K.G.Larsen, F.Larsson, P.Pettersson,
W.Yi, “UPPAAL: a Tool-Suite for Automatic
Verification of Real-Time Systems,” in R.Alur,
T.A.Henzinger, E.D.Sontag, editors, Hybrid Systems
III, LNCS Vol.1066, pages 232-243, Springer-Verlag,
1995.

[6] B.Berthomieu, M.Diaz, “Modeling and Verification
of Time Dependent Systems Using Time Petri Nets,”
IEEE Trans.on Soft.Eng., Vol.17, No.3, pages 259-
273, March 1991.

[7] B.Berthomieu, and M.Menasche, “An Enumerative
Approach for Analyzing Time Petri Nets,” IFIP
Congress Series, Elsevier Science Publ. Comp, Vol.
9, pages 41-46, Sept. 1983.

[8] G. Bucci, A. Fedeli, L. Sassoli, E. Vicario, “Timed
State Space Analysis of Real Time Preemptive Sys-
tems,” IEEE Trans.on Soft.Eng., Vol.30, No.2, pages
97-111, February 2004.

[9] G. Buttazzo, “Hard Real-Time Computing Systems,”
Norwell, MA Kluwer, 1997.

[10] F.Cassez, K.G.Larsen, “The Impressive Power of
Stopwatches,” LNCS, Vol.1877, pp.138-152, August
2000.

[11] C.Daws, A.Olivero, S.Tripakis, S.Yovine, “The tool
KRONOS,” in R.Alur, T.A.Henzinger, E.D.Sontag,
editors, Hybrid Systems III, LNCS 1066, pages 208-
219, Springer-Verlag, 1996.

[12] D.Dill, “Timing Assumptions and Verification of
Finite-State Concurrent Systems,” Proc. of the Inter-
national Workshop on Automatic Verification Methods
for Finite State Systems, LNCS, Vol. 407, pages: 197-
212, 1989.

[13] C.L.Liu, J.W.Layland, “Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environ-
ment,” Journal of the ACM, Vol.20, No.1, 1973.

[14] P.Merlin, D.J.Farber, “Recoverability of Communi-
cation Protocols,” IEEE Trans.on Communications,
Vol.24, No.9, Sept. 1976.

[15] L.Sha, R.Rajkumar, S.S.Sathaye, “Generalized Rate
Monotonic Scheduling Theory: a Framework for De-
veloping Real Time Systems,” IEEE Proceedings,
Vol.82, No.1, 1994.

[16] E.Vicario, “Static Analysis and Dynamic Steering of
Time Dependent Systems Using Time Petri Nets,”
IEEE Trans.on Soft.Eng., Vol.27, No.8, pages 728-
748, August 2001.

Proceedings of the First International Conference on the Quantitative Evaluation of Systems (QEST’04) 
0-7695-2185-1/04 $ 20.00 IEEE 


	IEEEcopyright_2004
	NoCopyright_QEST04



