ABSTRACT

The recent rise of the NoSQL movement motivates investigation on the performance impact that new persistence approaches can bring in the model-driven re-engineering of a consolidated object-oriented software architecture.

We report comparative experimental performance results attained by combining a pattern-based domain logic with a persistence layer based on different paradigms and we describe how data model is persisted in various implementation based on MySQL, Neo4j, and MongoDB.

Keywords

Model-driven performance engineering, Reflection pattern, Relational databases, NoSQL databases, MySQL, MongoDB, Neo4j, Electronic Health Record (EHR) systems.

1. INTRODUCTION

Non-functional requirements of changeability and adaptability [1] have primary relevance for a large class of software intensive systems that are intended for managing great volumes of data with a high degree of variety in the structure of contents. The attainment of these qualities can be largely facilitated by the assumption of a tailored software architecture.

In particular, the Reflection architectural pattern [2] provides a mechanism that allows for dynamically changing data structure and system behaviour at run-time [3]. To this end, the domain logic is modeled using two different levels of abstraction: a meta level provides a self-representation of the system encoding knowledge about data type structures, algorithms, and relationships; besides a base level application logic carries concrete data whose interpretation is determined by the values of so-called meta-objects.

The Observations & Measurements analysis pattern [4] implements the reflection principle specializing the abstraction for the case of high variety in the data attributes of object types. This pattern-oriented architectural design brings a number of further benefits, mostly linked to the quality of the code, and notably to maintainability, reusability, and consolidated understanding of implementation choices and consequences.

However, design by patterns does not account for performance as first-class requirement, and naturally incurs in well-known performance anti-patterns [5, 6], which may become crucial when volume and variety must meet also velocity [7]. These drawbacks are largely exacerbated when the domain logic is persisted over a relational storage layer, due to the nature of the domain model and its mismatch with the relational tier [8].

In general, the persistence of a domain model with complex structure into a relational database comes with a number of performance penalties, that translate in longer time required for key persistence operations. These issues can be partially mitigated with ad-hoc optimizations in the design of the relational database [9], pertaining to the choice of a particular representation for class inheritance, the use of auxiliary tables to store additional information, and the smart use of data fetching.

The interposition of an object-relational mapping (ORM) layer between the domain logic and the storage layer can mitigate this problem. In the practice of development of Java enterprise applications, Java Persistence API (JPA) specification represents a mature and state-of-the-art ORM solution which grants many benefits [10]. First of all, it allows to persist domain classes with a minimal boilerplate code, thanks to simplified annotation facilities. Also, it provides full integration with the Java application stack, composed by other technologies such as EJB (for encapsulating the business logic) and CDI (for implementing the Inversion of Control pattern [11]). However, JPA further increases the degree of indirection and this can have negat-
ive effects on the system performance, also due to the loss of
design control on the impact that domain logic operations
have on the storage process.

With the rise of the Not Only Sql (NoSQL) movement
[12], other options in the design of the storage layer are now
available, and provide various advantages, including reduced
access time through the clustering of similar data [13], and
increased adaptability to the variety and variability of data
over time through the use of a schemaless structure. This
motivates the investigation on engineering the performance
of existing applications by changing the storage schema from
a relational + ORM persistence stack to a NoSQL solution,
while preserving the domain logic structure. In particular,
this subdents a problem of re-modeling content representa-
tion in the schema of some NoSQL technology and quanti-
tatively evaluating the performance gain that can be at-
tained. In so doing, different NoSQL paradigms are more
or less close to the domain model and suited for its main
operations [14, 15], and a pattern-based organization of the
domain logic can drive the refactoring of the data model to-
wards more efficient performance results.

In this paper, we report on the performance engineering
of a three-tier web-application focused on the replacement
of a relational + ORM persistence stack through two differ-
ent NoSQL technologies, describing how a reflection-based
architecture can be modeled over the graph-oriented Neo4j
[16] and the document-oriented MongoDB [17] databases,
and comparing experimental performance results achieved
by the different solutions.

To this end, in Sect. 2, we describe a reflection-based ar-
chitecture that combines the Observations & Measurements
and the Composite patterns to attain a high degree of ad-
aptability and changeability and that is persisted over a re-
lational + ORM stack (Sect. 2.1), and we describe how this
was concretely exploited in the implementation of an Elec-
tronic Health Record (EHR) system [18, 19] which is in use
since various years in a major Italian hospital (Sect. 2.2). In
Sect. 3, we discuss how the domain model of the reflec-
tion architecture can be suitably represented over Neo4j and
MongoDB databases (Sect. 3.1, 3.2) and we show how these
representations are information equivalent to the original
relational representation (Sect. 3.3). In Sect. 4 we report the
result of experimentations aimed at measuring the per-
formance gain, compared to the actual implementation, re-
ferred to a crucial application use case, applied on real data
taken from the practice of use of the EHR system and on
synthetic data generated so as to stress the most relevant
dimensions of complexity. Performance results obtained in
both datasets show a clear gain in performance by the Mon-
goDB solution, and more generally, a better scalability of
NoSQL technologies when the complexity of the data struc-
tures increases. Conclusions are drawn in Sect. 5.

2. A REFLECTION ARCHITECTURE FOR
ADAPTABILITY

In this section we describe how the Reflection architectural
principles [2] can be implemented through a powerful
combination of the Observations & Measurements analysis
pattern [4] and the Composite pattern [20] to implement an
EHR system able to deal with medical concepts and clinical
data characterized by complexity and volatility.

2.1 Exploiting the Reflection, Observations &
Measurements, and Composite patterns

The Reflection architectural pattern [2, 3] permits the de-
velopment of a domain logic with a high degree of change-
ability and adaptability [1] through a mechanism that allows
for changing structure and behaviour of objects at run-time.
To this end, the domain logic is split in two layers so as to
support dynamic adaptation of the system in response to
changing requirements. On the one hand, a meta level con-
ists of a set of meta-objects providing information about
system properties. On the other hand, a base level mod-
els the business logic and uses information provided by the
meta level, in order to make the system more flexible when
changes occur.

The Observations & Measurements analysis pattern [4]
comprises an embodiment of the Reflection pattern, where
meta-objects are used to create abstraction on the attrib-
utes carried by different object types. In this case, measure-
ments, that allow to record quantitative information, and
observations, that extend the expressiveness of the pattern
for taking into account qualitative information, are both rep-
resented in a so-called day-to-day operational level. Their
configuration, in terms of semantic definition, is constrained
by a so-called knowledge level, where changes are typically
more infrequent.

Hierarchical structured data resulting from repeated ag-
grgregation of basic observations and measurements can be
cast in the representation through a mix-in of the Compos-
te pattern [20], by allowing an observation or measurement
be implemented as a collection of references to other obser-
vations or measurements.

Observations & Measurements has been frequently advoc-
ated as a scheme of great potential in the development of a
variety of applications that are supposed to collect data with
different structures and different versions over time. A not-
able class of applications, with major practical and econom-
ical impact, occurs in the creation of Electronic Health Re-
cord (EHR) systems [21]. In general, an EHR system [18] is a
kind of Health Information Management (HIM) system sup-
porting the acquisition, analysis, and maintenance of clinical
information items about a patient, in digital or traditional
form. For such a system, changeability and adaptability
[1] are qualities of primary relevance, which largely condi-
tion the ability of a software product in fitting the needs
of different medical specialities, and in accompanying their
evolution over time due to changes of local organizational
assumptions or even of the patient’s health status.

In the rest of this Section, we describe a concrete soft-
ware architecture that combines the Observations & Mea-
surements pattern with the Composite pattern. This pattern-
Figure 1: The domain model of the Empedocle EHR system based on the underlying meta-modeling paradigm, addressed in the architectural perspective by the Reflection pattern [2] and in the conceptual perspective by the Observations & Measurements pattern [4]. The meta-modeling approach allows a new medical concept to be accounted in the EHR system just through the instantiation of a new object from the class FactType, avoiding the need of programming new classes or class members and without any impact on the database schema or on its records. In the same manner, a new clinical concept can be recorded just through the instantiation of a new object from the class Fact.

The UML class-object diagram of Fig. 1 provides a high-level specification of the domain model implemented in the core of the Empedocle EHR system.

At the operational level, an EHR represents a structured collection of health information items about a Patient, derived through a set of clinical Examinations. Specifically, during each Examination, a series of clinical information items like signs (i.e. objective evidences noticed), symptoms (i.e. subjective evidences reported by patient), and other clinical observations are captured by health professionals as instances of the Fact class.

Conversely, the knowledge level must be designed so as to accommodate the intrinsic variability of the medical domain, which depends on the evolution over time as well as on differences among medical specialities. To this end, all medical concepts can be defined directly by domain experts as instances of the FactType class.

The resulting high-level model abstraction allows to separate the representation of medical knowledge (i.e. the semantic of medical phenomena) from clinical data (i.e. the value assumed by a specified medical phenomenon in a specified time for a specified patient), and empower domain experts to contribute to this knowledge in the course of system life. Accordingly, four different categories of knowledge can be identified: TextualType, for free-text information (e.g. patient’s anamnesis); QualitativeType, for values in a finite range of acceptable Phenomena (e.g. blood type with groups A, B, AB, and 0); QuantitativeType, for quantities with a specified set of acceptable Units (e.g. heart rate, measured in beats-per-minute); and CompositeType, for composing FactTypes in a hierarchical structure through a Composite pattern implementation (e.g. vital sign including temperature, blood pressure, heart and respiratory rate). The same categories can be identified at the operational
Figure 2: An example of Examination structure as represented using the domain model shown in Fig. 1: on the left, a direct acyclic graph obtained composing FactTypes and TypeLinks; on the right, a tree-like structure as resulting from the composition of Facts and FactLinks. Note that rectangles represent instances of FactType and Fact classes and define, respectively, medical concepts and clinical observations that are to be taken into account during a clinical examination. Rounded boxes represent instances of TypeLink and FactLink classes and are used to increase the expressiveness of each Type-to-Type and Fact-to-Fact association (for example, through the definition of its cardinality).

Knowledge Level Operational Level

Figure 3: The software architecture of the Empedocle EHR system. The Domain model component implements the domain logic through the meta-level modeling approach as described in Fig. 1.
Fig. 3 shows the software architecture of the *Empedocle* EHR system, as currently deployed at the Careggi hospital, which follows the usual scheme of a 3-tier system: the *Data layer* provides mechanisms for storing and retrieving data from a relational database; the *Object-Relational Mapping (ORM) Layer*, implemented by *Hibernate*, reconciles the object/relational paradigm mismatch between objects and relational data [22]; the *Application layer* implements the domain model of Fig. 1 and other services; finally, for the sake of completeness, the *Presentation layer* implements interfaces and logic for the interaction with users, and includes a *Viewer Engine* for automated generation of EHR content GUIs.

The high degree of changeability and adaptability provided by the *Empedocle* architecture allows that user tasks and responsibilities in the context-of-use [23] be partitioned according to the summary use case diagram of Fig. 4.

![Use Case Diagram](image)

Figure 4: A typical outpatient scenario, specifying the major actors involved in the care process and their interaction with an EHR system. The highlighted use case represents a major scenario of interaction: the health professional actor accesses patient’s EHR content in order to review past medical examinations and read collected clinical information.

Health professionals (e.g. general practitioner, medical specialist, registered nurse) take part to the care process at the operational level in different ways, in accordance with personal skills and specializations, including: i) the complete review of the patient’s EHR content (e.g. clinical history, allergies, active problems, test results); ii) the acquisition of clinical data through a medical examination; iii) the formulation of the correct diagnosis; and iv) the development of a specific treatment plan.

Medical concepts related to clinical data collected into the EHR system are identified and steadily maintained at knowledge level by one or more *domain experts*, who are health professionals with specific domain expertise as well as aware about governmental and hospital directives, and about factors depending on specialization of activities and scientific aims.

Finally, the *ICT expert* plays a lead role in bridging medical and informatics domains, in cases where technical skills are required for supporting health professionals through the implementation of additional system requirements that demand structural changes in the domain model, at the operational as well as the knowledge levels.

We do not report here on the characteristics of other complementary roles which are involved in the organization and enactment of the clinical process (e.g. from health direction and administrative support), but that are not directly concerned with the topic addressed in this paper.

3. Modeling Reflection Over a NoSQL Persistence Layer

In the common practice of software development, the persistence layer deals with retrieving data from and storing data to a relational data store, usually through the interposition of an ORM layer. In this kind of approach, the persistence model is largely determined by the object-oriented design of the domain logic.

By contrast, when persistence relies on a NoSQL solution, design gives space to alternative choices in the definition of the storage data model, which is, to a large extent, independent from the structure of object types. In fact, the absence of a fixed schema provides multiple options concerning the definition of the database structure, facilitating high variability over time. The overall design results more flexible, but inevitably more complex and harder to understand for software developers used to deal with traditional relational databases [24]; it also requires to take into account some specific aspects so as to realize data migration in the most opportune way [13].

In the rest of this Section, we describe two new data models as implemented using different NoSQL technologies, *Neo4j* [16], and *MongoDB* [17]. The choice of these two technologies was made so as to experiment with their data structure and promising performance improvement [25, 26], and to compare graph- and document-oriented NoSQL solutions applied to the case of a reflection software architecture that combines the *Observations & Measurements* and *Composite* patterns, as described in Sect. 2. Finally, the validity of the proposed models is proved, in terms of integrity of persisted data and equivalence of data representations.

3.1 A Model for Neo4j

Neo4j [16] relies on a *graph-oriented* structure, which can natively represent the domain logic of a reflection architecture, whose data structures are direct acyclic graphs and trees [27]. As a schemaless database, the data model in *Neo4j* is inherently defined by the nodes and relationships persisted in the database. Every node and relationship can also be characterized by an arbitrary number of properties.

From version 2.0, *Neo4j* developers tweaked its schemaless nature by introducing *labels* and *indexes*, two concepts that help modelling data in a more organized way, without losing the database original adaptability. Specifically, labels can be used to group together nodes, and each node can optionally be labeled with one or more text descriptions, and indexed
to improve query expressiveness and flexibility. Moreover, indexes can be defined on properties of labelled nodes, to improve performance during query operations, similarly to the relational case. Both labels and indexes are optional.

In our concrete case, modeling the domain logic in Neo4j comes down to: i) identifying the node structure that forms the model; ii) defining the relationships between nodes; iii) defining the properties that characterize nodes and relationships, and iv) labeling with the appropriate qualifiers.

Specifically, as depicted in the schema of Fig. 5, each class that is an entity in the original model has been represented as a node in the target model (i.e., FactType and Fact hierarchy classes, and Phenomenon and Unit classes). The resulting nodes have been labeled with a correspondent qualifier and, in addition to that, nodes that are part of the FactType and Fact hierarchies contain an extra label to identify their role in the class hierarchy (e.g., Fact:QualitativeFact qualifies a QualitativeFact inside a Fact hierarchy).

As it can be observed in the schema, the name property is used for identifying, at the knowledge level, a named FactType. The value property is used to record, at the operational level, the value assumed by a TextualFact or a QuantitativeFact node: a string of text in the first case, and a double precision number in the latter case. In this model, there is basically no difference between named and anonymous FactTypes: both are modeled using a node, and the only distinction between them is the presence of the name property.

Another characteristic of the graph model in Fig. 5 is the capability of modeling TypeLink and FactLink classes using relationships. These two classes were introduced in the original model to represent the parent-child relationship between FactType or Fact classes. For this reason, they can be naturally represented as a relationship in a graph-oriented model. In addition, since Neo4j represents relationships as directed arcs that can be traversed in both directions, this allows to simplify the model introducing a single relationship, called Has Children, for modeling TypeLink and FactLink classes, without any impact on query capabilities. Note that Neo4j allows to put a relationship only between two nodes, and this precludes the possibility to use a relationship to represent the reference between TypeLink and FactLink, as in the original model. Properties have been used to solve this problem, as follows: i) the uuid property of each TypeLink is used for storing an identifier value; ii) the same value is copied into the type property of the related FactLink. Properties have been used to solve this problem without transforming these two classes from relationships to nodes. Finally, the Has Type relationship is used to link together Fact and FactType nodes.

The self-explanatory Has Unit and Has Phenomenon relationships are ambivalent across the knowledge and the operational level, and are used to connect a QuantitativeType or QualitativeType node with a set of possible Unit or Phenomenon nodes, and the corresponding QuantitativeFact or QualitativeFact node with the selected Unit or Phenomenon node.
3.2 A model for MongoDB

MongoDB [17] data model is based upon a document-oriented structure. A document is a collection of attribute-value pairs, with values that can be basic types, array of values or nested sub-documents. Documents with similar characteristics are grouped together and stored in collections. Relation between documents can be represented using references, that produce a normalized data model, or by embedding related data in documents, producing denormalized models. In particular, the use of denormalization techniques [28] is promoted by document-oriented NoSQL solutions for discouraging the usage of JOIN queries, and solving typical performance issues that affect relational databases, preserving data consistency and completeness [29].

The schema of Fig. 6 illustrates the document-oriented model used in our concrete case, representing data in accordance with the domain model of Fig. 1. Usually, modeling an object-oriented domain logic using a document-based data model can be achieved in a direct way, but, in the case of study of a reflection architecture, this simplicity is weakened from the indirect structure of the model. The proposed solution attains a good balance, mixing together documents embedding approaches with references techniques [30] for obtaining a flexible data representation without performance degradation. In particular, the FactType hierarchy comprises a neat example of mixed modeling. In fact, while named FactType instances are persisted as documents, and are referenced by other documents using their ObjectID, anonymous FactType instances are persisted as embedded documents inside the named FactType document in which they are defined.

To efficiently recognize the subtyping-class of an instance in the FactType or Fact hierarchy, every persisted document has a property called class that can assume the following values: i) txt, for referring to a TextualType or TextualFact instance; ii) qtl, for referring to a QualitativeType or QualitativeFact instance; iii) qt, for referring to a QuantitativeType or QuantitativeFact instance; and, iv) cmp, for referring to a CompositeType or CompositeFact instance. In so doing, it is sufficient to check the class property value of a document to recognize its nature, avoiding to pre-emptively explore its properties. In the case of named FactTypes, the class property is valued with the string value ref, and an additional property called reference contains the ObjectID of the named FactType.

This different behaviour in FactType persistence drops the need to persist the TypeLink class as a separate entity. For this reason, TypeLink and FactType classes are modeled in MongoDB as a single entity, and the name property of embedded documents inside CompositeType instances corresponds to the TypeLink name property of the original model.
Note that since the embedded documents are always anonymous, the `FactType name` property is specified only for the root document of a `FactType` instance.

The `Fact` hierarchy does not have the same need for reusability and referencing that characterize `FactTypes`. For this reason, `Fact` instances can always be represented as a single document, in which `Fact` children are embedded as sub-documents. In so doing, the number of queries for data retrieval is considerably limited.

`Fact` and related `FactType` instances are linked together with different strategies, based on the nature of the `Fact`. In the case of a `Fact` root document, the `typeId` property is used to store the `ObjectId` of the referenced `FactType` instance. Otherwise, when dealing with sub-documents of the `Fact` root, the `type` property is used to refer to the `uuid` value of the corresponding `FactType`. Consequently, for completely retrieving a `Fact` and its `FactType`, it is necessary to: i) query for the `Fact`; then, ii) query for the corresponding `FactType` using the `ObjectId` referenced by the `Fact` root; iii) link together the retrieved `Fact` and `FactType` instances using the `type` property.

For the sake of completeness, `Phenomenon` entities are modeled as embedded documents inside `QualitativeFact` and `QuantitativeType` documents with the intent of minimizing the number of retrieval query in reading operations. In the same manner, `Unit` entities are modeled inside `QuantitativeFact` and `QuantitativeType` documents.

3.3 Information equivalence across data models

A comparison of the performance among different data storage implementations (i.e. from relational to a graph- or document-oriented model) requires that they are in some sense equivalent. Since data can be modeled in various ways through the use of different data structures offering the same information capacity, a notion of model equivalence, or hierarchy of equivalences [31], is required to be defined. In a general sense, two data structures can be considered equivalent in terms of information-capacities if they can be associated to the same number of states, such that each state of a data structure can be mapped to a database state of the other structure, preserving any relationship attribute value.

For the purpose of our experimentation, it is not necessary to prove the complete equivalence between two representations, but it is sufficient to prove the query equivalence of two models [32], i.e. the possibility to extract the same information from both models through query operations. Specifically, the equivalence problem consists in casting information data into structures (i.e. graphs or tree) of the same type. Comparing and matching graphs is a well-known NP-complete problem [33], and different approaches have been proposed to determine the distance between two graphs using specific heuristic [34, 35]. In our case, proving the equivalence of Neo4j and MongoDB data models with respect to the actual relational model means showing that they have the same representativeness of information. This means that the equivalence problem will be focused on showing that two data structures are exactly identical in the information they carry, rather than identifying similarities and differences between data models. Furthermore, it is not necessary to verify the query dominance for the new data model, but simply proving that it is possible to query the same `Examination` and `ExaminationType` structure across different representations.

In a practical manner, we consider equivalent two data representations of the same domain logic using different persistence models when the carried information can be serialized into an equivalent string of information. In so doing, given two different persistence models, named A and B, A and B are equivalent if it is possible to generate the same string serialization for each given `Examination` and `ExaminationType` instance represented in A and B. Consequently, if A is a valid model, and A and B are equivalent, than B is also valid. Note that we assume that the actual relational model is a valid reference model, from which we want to prove the validity of the converted NoSQL models.

We have started by choosing a dataset with an arbitrary number of clinical information data persisted in the relational model. Then, we have retrieved all the `Examinations` and `ExaminationTypes` instances contained in the dataset, and we have serialized the information data in a string representation. Finally, for testing the equivalence, we have converted information data from the relational model to the target NoSQL model, serializing again the information data, and comparing the resulting string with the string obtained from the relational model at the previous step. The validation process is considered successful, if we are able to obtain an equivalence between the reference relational model and the target NoSQL model for every string of information.

Fig. 7 illustrates an example of the string produced during the serialization process applied to the information data as so represented using the models depicted in Figs. 5 and 6. The structure of the serialization is deliberately similar to a JSON document, due to its simple and readable syntax. This string serialization can be also used to verify which are the essential properties that a model must implement to be valid.

Note that the completeness of the new representation is also granted by the structures of target models. In fact, the conversion from MySQL to Neo4j model is the most natural way since it allows to maintain nodes and relationships according to the structure of the original tree or graph. Moreover, the MongoDB document representation is modeled in a way that can be considered an inverse operation of vertical decomposition during normalization process, as discussed in [32] and [36].

```json
"compositeType" : {
  "aNamedType" : {
    "aQuantitativeType" : "10.2 u1"
  }
  "aTextualType" : "aText"
}
"aQualitativeType" : "Phenomenon2"
```

Figure 7: An example of serialization of a clinical `Examination`. The pattern used to serialize the information is as follows: `type.name : fact.value`. Composite `Fact` values are described by the list of values assumed by children `Facts` defined between braces.
4. EXPERIMENTATION AND RESULTS

An experimentation was carried out to evaluate the performance of the three different implementations based on MySQL+Hibernate, Neo4j, and MongoDB, and their sensitivity to the characteristics of the dataset.

The evaluation was focused on the Access EHR content use case (see Fig. 4), in which a health professional actor access past medical examinations related to a specific patient in order to review collected clinical information. This use case has turned out to have the most relevant impact on the perceived performance in the context-of-use and, at the same time, constitutes a major scenario of interaction in EHR systems.

4.1 Methodology of experimentation

We can expect that the response time of different storage schemes be dependent on the complexity of the collection of domain logic objects that are read-from or written-to the persistence layer. Due to the pattern-based architecture of classes in the domain logic, objects are organized in an almost tree-like structure, and their complexity can thus be characterized in terms of number of nodes and depth of the tree in the examination structure.

For this reason, we experimented with two different kind of datasets: i) a real dataset of clinical examinations acquired in the Empedocle EHR system for which we provide a description of the statistics about the number of nodes and the depth of the tree structure; ii) a synthetic dataset for which we can control the statistics so as to stress the indexes of complexity.

The real dataset consists of about 13,000 examinations that belong to the same medical speciality and thus share the same structure. Table 1 summarizes the complexity of the examination structure, i.e. the number of FactTypes included in each examination, which is the number of meta-objects in the knowledge level. The structure of the examination includes 243+110+99 fields, which are organized in a graph whose depth (intended as the maximum distance from the root node) is equal to 8, and which includes 144 FactTypes that act as composition nodes.

<table>
<thead>
<tr>
<th>Depth</th>
<th>Number of nodes</th>
<th>CompositeType</th>
<th>QualitativeType</th>
<th>QuantitativeType</th>
<th>TextualType</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>596</td>
<td>144</td>
<td>243</td>
<td>110</td>
<td>99</td>
</tr>
</tbody>
</table>

Table 1: Characteristics of the considered examination structure in the dataset, with additional details about the distribution of type nodes contained in the structure. Of the 596 nodes that form the examination type, 452 nodes are leaf nodes, which actually contain a value.

Note that, at the operational level, the complexity of the tree structure depends on the course of each specific examination, and its statistic is resumed in Figs. 8 and 9. Fig. 8 reports the distribution of examinations per number of nodes. Fig. 9 characterizes the distribution of examinations as the depth increases. Note that 96% of the examinations in the dataset have depth comprised between 4 and 6.

Figure 8: The histogram describes the distribution of examinations as the number of nodes varies. Note that about 35% of the examinations in the dataset are in the neighbourhood of 23±6, with peaks in 19, 20, 25 and 27. This shows clearly how, usually, only a small part of the examination structure, comprising 596 nodes, is actually filled out by health professionals. Only about 9% of the examinations in the dataset have more than 70 nodes filled out.

Figure 9: The histogram describes the distribution of examinations as the depth increases. Note that 96% of the examinations in the dataset have depth comprises between 4 and 6.

Note that, at the operational level, the complexity of the tree structure depends on the course of each specific examination, and its statistic is resumed in Figs. 8 and 9. Fig. 8 reports the distribution of examinations per number of nodes. Fig. 9 characterizes the distribution of examinations per depth of the tree structure. From these statistics, it is possible to note that the size of the tree-like structure (composed by Facts) is always much lower than the size of the corresponding graph structure (composed by FactTypes), which depends on the fact that, during a standard clinical session, not all the observations allowed by the examination structure (≈ 600) are actually recorded.

1The real dataset was conveniently anonymized by omitting patients' personal information, and by obscuring textual observations recorded during each clinical session.
The synthetic dataset contains generated examinations with a full binary tree structure, with depth ranging from 2 to 8. For each depth, a fixed number of 100 examinations has been generated. Being a full binary tree, the number of nodes \(n \) in each of the trees of depth \(d \) is given by:

\[
n = 2^{d+1} - 1,
\]
ranging from 3 to 511 nodes. The synthetic dataset does not correspond to a real situation in the present context-of-use of our EHR system, but it can become a possible scenario in the evolution of the use of the Empedocle EHR system, and, for this reason, represents a relevant part of the motivation for this performance engineering investigation. In the more general perspective of a reflection architecture, this corresponds to the case where different courses can be described on a structure with different degrees of completeness.

The evaluation has been carried out with reference to a major scenario of interaction: a health professional accesses a patient’s EHR content in order to review past medical examinations and read collected clinical information. To do that, each examination in the dataset has first been retrieved and, then, a read-only operation has been performed in order to simulate the real interaction of users with the EHR system through the interfaces exposed by the Presentation Layer.

As a metric of performance, we evaluated the total time required to complete the selected scenario, from data retrieving to data serialization, for all compared models. Note that the examination retrieval also implies the retrieval of the associated type structure. In the process of measuring the total time, we do not distinguish time passed by the various phases of data retrieval and process: specifically, we measure the time to complete the whole use case, that comprises database retrieval operations, interactions with Java database APIs or with the ORM persistence layer present only in the relational case.

Experimental results not reported here indicate that the ORM layer, implemented by Hibernate in the current application stack, does not significantly impact the overall performance, since it is optimized for the underlying database technology [37, 38]. No comparison has been carried out regarding storage space requirements for the considered technologies, not representing a critical aspect for the EHR system in the case under consideration.

The experiments were conducted on a computer with the following characteristics: Debian 3.2.60 operating system, with 2 x Intel Xeon E5640 @ 2.66 GHz 64-Bit CPU, and 32 GB of RAM Memory.

4.2 Results

Table 2 reports the results of the experimentation on the real dataset, showing the mean value \(\mu \) measured in ms, and the coefficient of variation \(CV \) of the time spent to complete the read-only operation for a single examination in the three implementations under test. These statistical indexes were evaluated by repeating the task for 100 times on all 12953 examinations in the dataset. In comparison with the MySQL + Hibernate implementation, Neo4j reduces the retrieval time by approximately 1.5 times, and MongoDB reduces it by more than 33 times. Performance with relational database such as MySQL are deeply linked to the number of JOIN in the executed queries. For this reason, in the considered model, the retrieval of specific classes of Facts has a different impact on the complexity of the query. In particular, since CompositeFacts represent hierarchical structures in the Facts tree, querying operations result in a higher number of JOINs, which produces a significant impact on performance, documented by [5] as “N+1 queries” data access anti-pattern or “Circuitous Treasure Hunt” problem. In a similar way, QuantitativeFacts and QualitativeFacts also produce more complex queries, since an additional JOIN operation is required to retrieve related Phenomena and Units.

Table 3 shows the results of experimentation on the synthetic dataset. We report the mean value \(\mu \) measured in ms, and the coefficient of variation \(CV \) of the time spent to complete the read-only operation for a single examination in the three implementations under test, evaluated by repeating the task for 100 times on all 100 examinations in the dataset. Results indicate that MongoDB attains a better performance and slower sensitivity to the examination depth. It should also be noted that the MySQL + Hibernate implementation performs better than Neo4j for examination with depth lower than 7.

<table>
<thead>
<tr>
<th>Depth</th>
<th>MySQL + Hibernate</th>
<th>Neo4j</th>
<th>MongoDB</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu) (ms)</td>
<td>(CV)</td>
<td>(\mu) (ms)</td>
<td>(CV)</td>
</tr>
<tr>
<td>2</td>
<td>6.93 0.12</td>
<td>18.76 0.12</td>
<td>1.07 0.05</td>
</tr>
<tr>
<td>3</td>
<td>9.54 0.11</td>
<td>19.41 0.09</td>
<td>1.2 0.06</td>
</tr>
<tr>
<td>4</td>
<td>12.6 0.1</td>
<td>21.57 0.09</td>
<td>1.38 0.07</td>
</tr>
<tr>
<td>5</td>
<td>18.87 0.09</td>
<td>26.04 0.08</td>
<td>1.64 0.07</td>
</tr>
<tr>
<td>6</td>
<td>28.17 0.09</td>
<td>33.94 0.05</td>
<td>2.2 0.07</td>
</tr>
<tr>
<td>7</td>
<td>48.18 0.08</td>
<td>44.03 0.05</td>
<td>3.05 0.08</td>
</tr>
<tr>
<td>8</td>
<td>121.29 0.04</td>
<td>72.93 0.05</td>
<td>4.88 0.07</td>
</tr>
</tbody>
</table>

Table 2: Comparison between MySQL+Hibernate, Neo4j, and MongoDB, evaluated using the real dataset comprising 12953 examinations. Table reports the mean value \(\mu \) and the coefficient of variation \(CV \) for the execution of a single examination, as well as the minimum \(\text{min} \) and maximum \(\text{max} \) execution time registered during the 100 iterations for a specific technology.

Table 3: Comparison between MySQL+Hibernate, Neo4j, and MongoDB, evaluated using the synthetic dataset comprising 100 examinations with increasing depth. Table reports the mean value \(\mu \) and the coefficient of variation \(CV \) for the execution of a single examination. Results in the table show that the MySQL + Hibernate implementation performs better than Neo4j for examination with depth lower than 7, while MongoDB attains by far a better performance and slower sensitivity to the examination depth.
5. CONCLUSIONS

In this paper we described a consolidated software architecture, pattern-based, which persistence data layer was originally based on the MySQL relational database and JPA. Using a model-driven approach we described new data persistence models based on promising NoSQL technologies, such as Neo4j [16] and MongoDB [17]. These models have been engineered to balance in the best way elements such as: ease of conversion, embedding and references, granting data integrity and equivalence in the information representation with the relational model.

We presented experimental results on performance gain achieved through the use of such databases. The comparison is based on the study of the real world scenario of our EHR system, called Empedocle, based on the Observations & Measurements [4] and Composite [20] patterns, where the main requirement is the structure flexibility. Since the considered NoSQL databases do not have a fixed schema, non-functional requirements of changeability and adaptability can be easily achieved. In addition, they constitute a good solution for big clusters of data which structure is subject to change over time.

Performance results obtained during experiments in real and synthetic datasets indicate a clear gain in performance through the use of MongoDB database, and more generally, a better scalability of NoSQL solutions when the depth of the examination structures grows, due to the increased number of JOINs and reference operations affecting the MySQL solution. Moreover, both tested NoSQL technologies offer advantages in terms of flexibility in the data model, scalability and reliability.

Results also indicate a counter-intuitive conclusion: the graph-oriented data model of Neo4j allows a more natural and direct data conversion, which also permits a simpler implementation; however, the document-oriented data model of MongoDB produces by far better performance results. Specifically Neo4j, which modeling is more natural in our software architecture context, presents a performance increase of 1.5 times compared to MySQL + Hibernate. On the other hand, MongoDB, which required a bigger engineering investment to convert our data model balancing between redundancy, adaptability and performance, presents a gain of almost 33 times compared to MySQL + Hibernate.

The present investigation is completely open to explore the performances of NoSQL databases in other use cases, not only limited to read-only operations, but also extended to write and update scenarios, whose impact on the application is less relevant but nonetheless interesting to have a full comparison between the various models [39].

6. REFERENCES

