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Abstract. In Ambient Assisted Living (AAL), Activity Recognition
(AR) plays a crucial role in filling the semantic gap between sensor data
and interpretation needed at the application level. We propose a quanti-
tative model-based approach to on-line prediction of activities that takes
into account not only the sequencing of events but also the continuous
duration of their inter-occurrence times: given a stream of time-stamped
and typed events, online transient analysis of a continuous-time stochas-
tic model is used to derive a measure of likelihood for the currently per-
formed activity and to predict its evolution until the next event; while
the structure of the model is predefined, its actual topology and stochas-
tic parameters are automatically derived from the statistics of observed
events. The approach is validated with reference to a public data set
widely used in applications of AAL, providing results that show compara-
ble performance with state-of-the-art offline approaches, namely Hidden
Markov Models (HMM) and Conditional Random Fields (CRF).
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1 Introduction

Ambient Assisted Living (AAL) aims at providing assistance to people living
within smart environments through the integration and exploitation of new sens-
ing technologies, data processing techniques, and services [11]. To this end, Ac-
tivity Recognition (AR) plays a crucial role in filling the gap between sensor data
and high level semantics needed at the application level [18]. This comprises a
major ground for the application of quantitative approaches to diagnosis, pre-
diction, and optimization.

A large part of techniques applied for AR [30] rely on or compare with Hid-
den Markov Models (HMM) [27]: the current (hidden) activity is the state of
a Discrete Time Markov Chain (DTMC), and the observed event depends only
on the current activity; stochastic parameters of the model can be determined
through supervised learning based on some given statistics; and efficient algo-
rithms are finally available to determine which path along hidden activities may
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have produced with maximum likelihood a given trace of observed events. While
the ground truth is often based on data sets annotated w.r.t. predefined ac-
tivities [27, 19], more data driven and unsupervised approaches have been advo-
cated where activities are identified through the clustering of emergent recurring
patterns [20, 3]. Various extensions were proposed to encode memory in HMM
by representing sojourn times through discrete general or phase type distribu-
tions [16]. However, also in these cases, the discrete-time abstraction of the model
prevents exploitation of continuous time observed between event occurrences.

To overcome this limitation, [8] proposes that the evolution of the hidden
state be modeled as a non-Markovian stochastic Petri Net emitting randomized
observable events at the firing of transitions. Approximate transient probabili-
ties, derived through discretization of the state space, are then used as a measure
of likelihood to infer the current hidden state from observed events. To avoid the
complexity of age memory accumulated across subsequent states, the approach
assumes that some observable event is emitted at every change of the hidden
state. Moreover, the structure of the model and the distribution of transition
durations are assumed to be given.

Automated construction of an unknown model that can accept sequences of
observed events is formulated in [24] under the term of process elicitation, and
solved by various algorithms [26] supporting the identification of an (untimed)
Petri Net model. Good results are reported in the reconstruction of adminis-
trative workflows [25], while applicability appears to be more difficult for less
structured workflows, such as healthcare pathways [15]. As a part of the process
mining agenda, process enhancement techniques have been proposed to enrich an
untimed model with stochastic parameters derived from the statistics of observed
data [22].

In this paper, we propose a quantitative model-based approach to on-line pre-
diction of activities that takes into account not only the type of events but also
the continuous duration of activities and of inter-events time. Given a stream
of time-stamped and typed events, transient probabilities of a continuous-time
stochastic model are used to derive a measure of likelihood for on-line diagno-
sis and prediction of performed activities. Transient analysis based on transient
stochastic state classes [12] maintains the continuous-time abstraction and keeps
the complexity insensitive to the actual time between subsequent events. While
the structure of the model is predefined, its actual topology and stochastic pa-
rameters are automatically derived from the statistics of observed events. Ap-
plicability to the context of AAL is validated by experimenting on a reference
annotated data set [27], and results show comparable performance w.r.t. offline
classification based on Hidden Markov Models (HMM) and Conditional Random
Fields (CRF).

In the rest of the paper: the data set of [27] is introduced and commented in
Section 2; assumed structure and stochastic enhancement of the model used for
the evaluation of likelihood is introduced in Section 3; the experimental setup
and results are reported in Section 4; limitations and further steps enabled by
the results are discussed in Section 5.



3

2 Problem formulation

2.1 Description of the data set under consideration

We base our experimentation on a well-known and publicly available annotated
data set for AR [27] containing binary data generated by 14 state-change sensors
installed in a 3-room apartment, deployed at different locations (e.g., kitchen,
bathroom, bedroom) and placed on various objects (e.g., household appliances,
cupboards, doors). Seven activity types derived from the Katz Activities of Daily
Living (ADL) index [14], i.e., Γ = {Leaving house, Preparing a beverage, Prepar-
ing breakfast, Preparing dinner, Sleeping, Taking shower, Toileting}, were per-
formed and annotated by a 26-year-old subject during a period of 28 days. The
annotation process yielded a ground truth consisting of a stream of activities a1,
a2, . . . , aK , each being a triple ak = 〈γk, tstartk , tendk 〉 where γk ∈ Γ is the activity
type, tstartk is the activity start time, and tendk is the activity end time. An ad-
ditional activity (not directly annotated) named Idling is considered, consisting
of the time during which the subject is not performing any tagged activity. The
data set includes 245 activity instances, plus 219 occurrences of Idling. Activities
are usually annotated in a mutually exclusive way (i.e., one activity at a time),
with the only exception of some instances of Toileting which was annotated so as
to be performed concurrently with Sleeping (21 times) or with Preparing dinner
(1 time).

The data set includes 1319 sensor events, classified in 14 event types, and
encoded in the so called raw representation, which holds a high signal in the in-
terval during which the condition detected by a sensor is true, and low otherwise
(see Figure 1-left). In this case, each event is a triple en = 〈σn, tstartn , tendn 〉 where
σn ∈ Σraw is the event type, tstartn is the event start time, and tendn is the event
end time. As suggested in [2] for the handling of data sets with frequent object
interaction, raw events where converted into a dual change-point representation,
which emits a punctual signal when the condition goes true and when it goes
back false (see Fig. 1-right). In this encoding, observations are a stream of punc-
tual events e1, e2, . . . , eN (doubled in number w.r.t. the raw representation, and
sub-typed as start and end ), each represented as a pair en = 〈σn, tn〉, where
σn ∈ Σ is the event type, and tn is the event occurrence time. In so doing, the
number of events and event types has doubled, i.e., N = 2638, and |Σ| = 28.

tn
start tn

end

e(!"="microwave)n n

tn tn+1

e(!"="start_microwave)n n e (!"""="end_microwave)n+1 n+1

Fig. 1. Sensor representation: raw (left) and dual change-point (right).

Also for the limited accuracy of the tagging process (in [27], annotation was
performed on-the-fly by tagging the start time tstartk and the end time tendk of
each performed activity ak using a bluetooth headset combined with speech
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recognition software), the starting and ending points of activities are often de-
layed and anticipated, respectively. As a result, as shown in Figure 2, the start
(end) time of an activity does not necessarily coincide with the occurrence time
of its first (last) event.
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Fig. 2. A fragment of an events stream together with annotated activities.

2.2 Statistical abstraction

We abstracted the data set content so as to capture four aspects of its statistics:
the duration of each activity; the time elapsed between subsequent events within
each activity; the type of events occurred in each activity; and, the type of events
occurred as first events in each activity.

Let {en = 〈σn, tn〉}Nn=1 and {ak = 〈γk, tstartk , tendk 〉}Kk=1 be the streams of
observed events and tagged activities, respectively. The duration δk of an activ-
ity instance ak is computed as the time elapsed from the first to the last event
observed during ak, i.e., δk = maxn|tstartk ≤tn≤tendk

{tn} − minn|tstartk ≤tn≤tendk
{tn}

(e.g., in Fig. 2, δk = tn+h − tn). The duration δk−1,k of an instance of Idling
enclosed within two activities ak−1 and ak is derived as the time elapsed from
the last event observed during ak−1 to the first event observed during ak, i.e.,
δk−1,k = minn|tstartk ≤tn≤tendk

{tn}−maxn|tstartk−1 ≤tn≤t
end
k−1
{tn} (e.g., in Fig. 2, δk−1,k =

tn−tn−u). The duration statistic provides the mean and variation coefficient (CV)
of the duration of each activity type, as shown in Table 1.

The inter-events time statistic evaluates the time between consecutive events
occurring within an activity. In so doing, we do not distinguish between event
types, and we only consider times between events. The inter-events time of Idling
is computed taking into account orphan events, i.e., events not belonging to any
tagged activity (e.g., en−1 in Fig. 2), and the first event of each activity (e.g., en
in Fig. 2). Also the inter-events time statistic provides mean and CV for each
activity type, as shown in Table 1. Most of measured time spans have a CV
higher than 1, thus exhibiting a hyper-exponential trend, as expected in ADL
where timings may follow different patterns from time to time. Only the duration
of Leaving house has a CV nearly equal to 1.

Table 2 shows the event type statistic, which computes the frequency ψσ,γ of
an event of type σ within an activity of type γ, ∀ σ ∈ Σ, ∀ γ ∈ Γ , i.e., ψσ,γ =
Prob{the type of the next event is σ | the type of the current activity is γ}.

Table 3 shows the starting event type statistic, which evaluates: i) the fre-
quency θσ of an event type σ either as the first event of an activity (regardless
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Duration Inter-events time
µ (s) CV µ (s) CV

Idling 1793.102 2.039 3906.167 3.292

Leaving house 40261.455 1.042 9354.190 2.810

Preparing a beverage 35.667 1.361 7.643 2.613

Preparing breakfast 108.684 0.713 9.928 1.844

Preparing dinner 1801.889 0.640 77.966 2.589

Sleeping 26116.571 0.442 1871.836 3.090

Taking shower 485.910 0.298 102.788 1.969

Toileting 88.742 1.175 14.814 2.449

Table 1. Activity duration and inter-events time statistics (trained on all days but the
first one): mean (µ) and coefficient of variation (CV) of the duration and inter-events
time of each activity, respectively.

of the activity type) or as an orphan event, ∀ σ ∈ Σ, i.e., θσ = Prob{the type of
an event e is σ | e is either the first event observed during the current activity or
an orphan event}; and, ii) the frequency φσ,γ of an event of type σ as the first
event of an activity of type γ, ∀ σ ∈ Σ, ∀ γ ∈ Γ , i.e., φσ,γ = Prob{an activity
of type γ is started | an event of type σ is observed and the subject was idling
before the observation}. As a by-product, ∀ σ ∈ Σ, the statistic also computes
Prob{the subject remains idling | an event of type σ is observed and the subject
was idling before the observation} = 1−

∑
γ∈Γ φσ,γ .

3 Classification Technique

In the proposed approach, a continuous-time stochastic model is constructed
so as to fit the statistical characterization of the data set. Activity recognition
is then based on a measure of likelihood that depends on the probability that
observed time-stamped events have in this model.

3.1 Model syntax and semantics

The stochastic model is specified as a stochastic Time Petri Net (sTPN) [28]. As
in [23], the formalism is enriched with flush functions which permit the marking
of a set of places be reset to zero upon firing of a transition. This improves
modeling convenience without any substantial impact on the complexity for the
analysis.

Syntax An sTPN is a tuple 〈P ;T ;A−;A+;A·;m0; EFT ; LFT ;F ; C;L〉 where:
P is the set of places; T is the set of transitions; A− ⊆ P × T , A+ ⊆ T × P ,
and A· ⊆ P × T are the sets of precondition, postcondition, and inhibitor arcs,
respectively; m0 : P → N is the initial marking associating each place with
a number of tokens; EFT : T → Q+

0 and LFT : T → Q+
0 ∪ {∞} associate

each transition with an earliest and a latest firing time, respectively, such that
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start front door 0.497 - - - - - -

end front door 0.503 - - - - - -

start hall-bathroom door - - - 0.018 0.111 0.008 0.261

end hall-bathroom door - - - 0.023 0.115 - 0.261

start hall-bedroom door - - - - 0.274 - 0.019

end hall-bedroom door - - - - 0.280 - 0.013

start hall-toilet door - - 0.004 - 0.041 0.540 0.057

end hall-toilet door - - 0.004 - 0.045 0.452 0.063

start cups cupboard - 0.176 0.009 0.018 - - -

end cups cupboard - 0.176 0.009 0.018 - - -

start groceries cupboard - - 0.119 0.055 - - -

end groceries cupboard - - 0.123 0.055 - - -

start pans cupboard - - 0.009 0.115 - - -

end pans cupboard - - 0.009 0.111 - - -

start plates cupboard - - 0.106 0.083 - - -

end plates cupboard - - 0.106 0.083 - - -

start dishwasher - 0.010 0.004 0.005 - - -

end dishwasher - 0.010 0.004 0.005 - - -

start freezer - 0.020 0.049 0.070 - - -

end freezer - 0.020 0.049 0.070 - - -

start fridge - 0.294 0.167 0.106 - - -

end fridge - 0.294 0.167 0.106 - - -

start microwave - - 0.031 0.023 - - -

end microwave - - 0.031 0.018 - - -

start toilet flush - - - 0.009 0.067 - 0.163

end toilet flush - - - 0.009 0.067 - 0.163

Table 2. Event type statistic (trained on all days but the first one): frequency ψσ,γ of
each event type σ ∈ Σ (rows) within each activity type γ ∈ Γ (columns).

EFT (t) ≤ LFT (t) ∀ t ∈ T ; F : T → F st associates each transition with a
static Cumulative Distribution Function (CDF) with support [EFT (t),LFT (t)];
C : T → R+ associates each transition with a weight; L : T → P(P ) is a
a flush function associating each transition with a subset of P . A place p is
termed an input, an output, or an inhibitor place for a transition t if 〈p, t〉 ∈ A−,
〈t, p〉 ∈ A+, or 〈p, t〉 ∈ A·, respectively. A transition t is called immediate (IMM)
if [EFT (t),LFT (t)] = [0, 0] and timed otherwise; a timed transition t is termed
exponential (EXP) if Ft(x) = 1 − e−λx over [0,∞] for some rate λ ∈ R+

0 and
general (GEN) otherwise; A GEN transition t is called deterministic (DET) if
EFT (t) = LFT (t) and distributed otherwise. For each distributed transition t,
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start front door 0.076 0.780 - - - - - - 0.220

end front door 0.017 0.111 - - - - - - 0.889

start hall-bathroom door 0.183 - - - - - - 0.707 0.293

end hall-bathroom door 0.063 - - - - - - 0.118 0.882

start hall-bedroom door 0.050 - - - - 0.148 - 0.296 0.556

end hall-bedroom door 0.046 - - - - 0.360 - 0.080 0.560

start hall-toilet door 0.117 - - - - 0.095 0.222 0.016 0.667

end hall-toilet door 0.128 - - 0.015 - 0.029 0.116 0.145 0.695

start cups cupboard 0.048 - 0.308 - - - - - 0.692

start groceries cupboard 0.044 - - - 0.125 - - - 0.875

start pans cupboard 0.031 - - 0.118 - - - - 0.882

start plates cupboard 0.046 - - 0.520 - - - - 0.480

start dishwasher 0.024 - - - 0.077 - - - 0.923

start freezer 0.020 - 0.091 - 0.273 - - - 0.636

start fridge 0.068 - 0.243 0.081 0.054 - - - 0.622

start toilet flush 0.039 - - - - - - 0.524 0.476

Table 3. Starting event type statistic (trained on all days but the first one): for each
event type σ ∈ Σ, i) frequency θσ (first column), ii) frequency φσ,γ for each activity
type γ ∈ Γ (from the second to the second-to-last column), iii) 1 −

∑
γ∈Γ φσ,γ (the

last column). Note that only the 16/28 event types that have non-null θσ are shown.

we assume that Ft is absolutely continuous over its support and thus that there
exists a Probability Density Function (PDF) ft such that Ft(x) =

∫ x
0
ft(y)dy.

Semantics The state of an sTPN is a pair 〈m, τ〉, where m : P → N is a
marking and τ : T → R+

0 associates each transition with a time-to-fire. A
transition is enabled if each of its input places contains at least one token and
none of its inhibitor places contains any token; an enabled transition is firable
if its time-to-fire is not higher than that of any other enabled transition. When
multiple transitions are firable, one of them is selected to fire with probabil-
ity Prob{t is selected} = C(t)/

∑
ti∈T f (s) C(ti), where T f (s) is the set of firable

transitions in s. When t fires, s = 〈m, τ〉 is replaced by s′ = 〈m′, τ ′〉, where m′ is
derived from m by: i) removing a token from each input place of t and assigning
zero tokens to the places in L(t) ⊆ P , which yields an intermediate marking
mtmp, ii) adding a token to each output place of t. Transitions enabled both by
mtmp and by m′ are said persistent, while those enabled by m′ but not by mtmp

or m are said newly-enabled; if t is still enabled after its own firing, it is regarded
as newly enabled [4]. The time-to-fire of persistent transitions is reduced by the
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time elapsed in s, while the time-to-fire of newly-enabled transitions takes a
random value sampled according to their CDF.

3.2 Model structure and enhancement

Model structure The model used to evaluate the likelihood of observed events
is organized by composition of 7+1 submodels, which fit the observed behavior
in the 7 activities classified in the Van Kasteren data set [27] and in the remain-
ing Idling periods. Fig. 3 shows a fragment focused on Idling and Preparing a
beverage.

In the Idling submodel, places p IDLE durationStart and p IDLE eventWait

receive a token each when the Idling starts, on completion of any activity. The
token in p IDLE eventWait is removed whenever an event is observed (firing of
the GEN transition t IDLE interEventsTime); in this case, different IMM tran-
sitions are fired depending on the type of the observed event (t START FRIDGE,
t START FREEZER, . . . ), and then for each different type, a choice is made on
whether the event is interpreted as a continuation of the Idling period (e.g.,
t skip START FRIDGE) which will restore a token in p IDLE eventWait, or as the
starting of each of the possible activities (e.g. t START FRIDGE starts GET DRINK,
t START FRIDGE starts PREPARE DINNER,...). In parallel to all this, the token
in p IDLE durationStart will be removed when the duration of Idling ex-
pires (at the firing of the GEN transition t IDLE duration) or when an ob-
served event is interpreted as the beginning of any activity (e.g., at the firing of
t START FRIDGE starts GET DRINK); note that the latter case is not shown in
the graphical representation and it is rather encoded in a flush function. Simi-
larly, when the duration of Idling expires, the token in p IDLE eventWait will
be removed by a flush function associated with transition t GET IDLE duration.

In the Preparing a beverage submodel, places p GET DRINK durationStart

and p GET DRINK eventWait receive a token each when an event observed during
the Idling period is interpreted as the beginning of an instance of the Preparing a
beverage activity. The token in p GET DRINK eventWait is removed whenever an
event is observed (firing of the GEN transition t GET DRINK interEventsTime),
and restored after the event is classified according to its type (IMM transi-
tions t GET DRINK END FRIDGE, t GET DRINK END FREEZER, . . . ). In parallel to
this, the token in p GET DRINK durationStart will be removed when the du-
ration of the Preparing a beverage activity expires (at the firing of the GEN
transition t GET DRINK duration). Note that, in this case, also the token in
p GET DRINK eventWait will be removed: this is performed by a flush function
associated with transition t GET DRINK duration.

In so doing, in any reachable marking, only the submodel of the current
activity contains two non-empty places, one indicating that the activity duration
is elapsing (e.g., p GET DRINK durationStart) and the other one meaning that
the inter-events time is expiring (e.g., p GET DRINK eventWait). Note that, as
a naming convention, any transition named t EVENT (where EVENT is an event
type that may start an activity) or t ACTIVITY EVENT (where EVENT is an event
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type that may occur within ACTIVITY) accounts for an observable event, while
all the other transitions correspond to unobservable events. Finally, note that
the general structure of the model is open to modifications in various directions.
For instance, in the submodels of activities, the choice between events might be
easily made dependent on the duration of the inter-event time, which would allow
a more precise classification without significantly impacting on the analyzability
of the model. The viability of such evolutions mainly depends on the significance
of the statistics that can be derived form the data set.

p_IDLE_eventWait

p_GET_DRINK_eventOccurred

t_IDLE_interEventsTimet_skip_START_FRIDGE

t_GET_DRINK_duration

t_IDLE_duration

p_START_FRIDGE_occurred

t_GET_DRINK_interEventsTime

t_GET_DRINK_END_FREEZER

t_START_FRIDGE_starts_PREPARE_DINNER

t_START_FRIDGE_starts_PREPARE_BREAKFAST

p_GET_DRINK_eventWait

p_IDLE_eventOccurred

t_GET_DRINK_END_FRIDGE

p_IDLE_durationStart

t_START_FREEZER

t_START_FRIDGE

p_GET_DRINK_durationStart

t_START_FRIDGE_starts_GET_DRINK

Preparing a beverage submodel

...

...

...
...

...

Idling submodel

Fig. 3. A fragment of the stochastic model used to evaluate the likelihood measure.

Model enhancement The actual topology of the model and its stochastic tem-
poral parameters are derived in automated manner from the statistical indexes
extracted in the abstraction of the data set (Section 2).

The event types that can start an activity (e.g., in the model of Fig. 3,
t START FRIDGE starts GET DRINK, t START FRIDGE starts PREPARE DINNER,
. . . ) and the discrete probabilities in their random switch are derived from the
starting event type statistic. The event types that can be observed during each
activity (e.g., t GET DRINK END FRIDGE, t GET DRINK END FREEZER, ...) or can
continue an Idling period and the discrete probabilities in their random switch
are derived from the event type statistics.

The distribution associated with GEN transitions is derived from the dura-
tion statistic and the inter-events time statistic by fitting expected value and
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Coefficient of Variation (CV) as in [29]: if 0 ≤ CV ≤ 1/
√

2, we assume a shifted
exponential distribution with PDF f(x) = λe−λ(x−d) over [d,∞), where σ2 is the
variance, λ = σ−1, and d = µ−σ; if 1/

√
2 < CV < 1, we use a hypo-exponential

distribution with PDF f(x) = λ1λ2/(λ1 − λ2)(e−xλ2 − e−xλ1), where λ−1i =
(µ/2)(1±

√
2CV 2 − 1), with i = 1, 2; if CV ≈ 1, we adopt an exponential distri-

bution with λ = 1/µ; if CV > 1, we consider a hyper-exponential distribution

with PDF f(x) =
∑2
i=1 piλie

−λix, where pi = [1 ±
√

(CV 2 − 1)/(CV 2 + 1)]/2
and λi = 2piµ

−1.

3.3 Online diagnosis and prediction

We use the transient probability πγ(t) that an activity of type γ ∈ Γ is being
performed at time t as a measure of likelihood for γ at t. A prediction P(t) emitted
at time t consists of the set of activity types that may be performed at t, each
associated with the likelihood measure, i.e., P(t) = {〈γ, πγ(t)〉 | πγ(t) 6= 0}.
Between any two subsequent events en = 〈σn, tn〉 and en+1 = 〈σn+1, tn+1〉, a
prediction P(t) is emitted at equidistant time points in the interval [tn, tn+1],
i.e., ∀ t ∈ {tn, tn + q, tn + 2q, . . . , tn+1}, with q ∈ R+. In the experiments, we
assume the activity type with the highest measure of likelihood as the predicted
class to be compared against the actual class annotated in the ground truth,
i.e., at time t, the predicted activity is γ | πγ(t) = maxa∈Γ |〈a,πa(t)〉∈P(t){πa(t)}.

As a result of the prescribed model structure and the specific enhancement,
the stochastic model subtends a Markov Regenerative Process (MRP) [9, 10, 5]
under enabling restriction, i.e., no more than one GEN transition is enabled in
each marking (only the duration of four activities is modeled by a shifted expo-
nential distribution, thus no more than one DET transition is enabled in each
marking). According to this, online diagnosis and prediction can be performed
by leveraging the regenerative transient analysis of [12]. The solution technique
of [12] samples the MRP state after each transition firing, maintaining an addi-
tional timer τage accounting for the absolute elapsed time; each sample, called
transient class, is made of the marking and the joint PDF of τage and the times-
to-fire of the enabled transitions. Within a given time limit T , enumeration of
transient classes is limited to the first regeneration epoch and repeated from
every regeneration point (i.e., a state where the future behavior is independent
from the past), enabling the evaluation of transient probabilities of reachable
markings through the solution of generalized Markov renewal equations.

In the initial transient class of the model, the marking assigns a token to
places p IDLE durationStart and p IDLE eventWait, all transitions are newly
enabled, and τage has a deterministic value equal to zero. After n observed
events e1 = 〈σ1, t1〉, . . . , en = 〈σn, tn〉, let Sn = {〈sin, ωin〉} be the set of pos-
sible transient classes sin having probability ωin, where

∑
i|〈sin,ωin〉∈Sn

ωin = 1.

Regenerative transient analysis [12] of the model is performed from each pos-
sible transient class 〈sin, ωin〉 ∈ Sn up to any observable event within a given
time limit, which is set equal to 48 h to upper bound the time between any two
subsequent events. This allows one to evaluate transient probabilities of reach-
able markings, i.e., pn,im (t) = Prob{Mn,i(t) = m} ∀ t ≤ T , ∀ m ∈ Mn,i, where
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Mn,i = {Mn,i(t), t ≥ 0} is the underlying marking process, and Mn,i is the set
of markings that are reachable from sin. Since in any reachable marking only
the submodel of the ongoing activity contains non-empty places, transient prob-
abilities of markings are aggregated to derive transient probabilities of ongoing
activities πγ(t) =

∑
〈sin,ωin〉∈Sn

ωin
∑
m∈Mn,i

γ
pn,im (t) ∀ γ ∈ Γ , where Mn,i

γ is the

set of markings that are reachable from sin and have non-empty places in the
submodel of the activity type γ.

Whenever an event en+1 = 〈σn+1, tn+1〉 is observed, any tree of transient
classes enumerated from class 〈sin, ωin〉 ∈ Sn is explored to determine the possi-
ble current classes and their probability. More specifically: i) the possible current
classes are identified as those classes that can be reached after a time tn+1 − tn
through a sequence of unobservable events followed by the observed event en+1;
ii) any possible current class sjn+1 is a regeneration point since, by model con-
struction, each GEN transition is either newly enabled or enabled by a deter-
ministic time (i.e., the timestamp tn+1 − tn); and, iii) the probability ωjn+1 of

sjn+1 is obtained as limt→t−n+1
ζspn+1

(t) · ρ, where spn+1 is the last class where the

model waits for the arrival of the next event en+1, ζspn+1
(t) is the probability

of being in class spn+1 at time t, and ρ is the product of transition probabili-

ties of the arcs encountered from spn+1 to sjn+1; iv) in the limit case that spn+1

is vanishing, ωjn+1 is obtained as the product of transition probabilities of the

arcs encountered from the root class to sjn+1. Hence, the approach is iterated,
performing transient analysis from any new current class up to any observable
event, still encountering regeneration points after each observed event.

By construction, the approach complexity is linear in the number of observed
events. For each observed event en = 〈σn, tn〉, the number of transient trees to
enumerate is proportional to the number of possible parallel hypotheses |P(tn)|,
i.e., the number of activity types that may be performed at time tn; moreover,
the depth of each transient tree is proportional to the number of events that may
occur between two observations (which is bounded in the considered application
context), and relatively insensitive to the time elapsed between observed events.

4 Computational Experience

4.1 Experimental setup

Experiments were performed on the data set [27], using a dual change-point
representation for sensor events as detailed in Section 2. We split data provided
by the computed statistics and event logs into training and test sets using a
Leave One Day Out (LOO) approach, which consists of using each instance of
one full day sensor readings for testing and the instances of the remaining days
for training. Since, in each test, predictions are emitted starting from the first
observed event of the day, we extended online analysis up to the first event of
the next day. To avoid inconsistencies in the characterization of Leaving house,
during which all the event types were observed, we removed from the training sets
all events occurring during Leaving house that are not of type start front door
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and end front door. Moreover, whenever the ground truth includes concurrent
activities, we considered our prediction correct if the predicted activity type is
equal to any of the concurrent activity types.

We performed experiments using two fitting techniques in the evaluation of
the duration and the inter-events time statistics: i) only exponential distributions
(i.e., exponential case); ii) different classes of distributions based on the CV value,
as discussed in Section 3.2 (i.e., non-Markovian case). On a machine with an Intel
Xeon 2.67 GHz and 32 GB RAM, the evaluation for a single day took on average
43 s for the exponential case and 18 minutes for the non-Markovian case.

We evaluated the performance of our approach computing, for each activity
class, three measures, derived from the number of true positives (TP), false
positives (FP), and false negatives (FN): i) precision Pr = TP/(TP + FP ),
which accounts for the accuracy provided that a specific class has been predicted;
ii) recall Re = TP/(TP + FN), which represents the ability to select instances
of a certain class from a data set; and, iii) F-measure F1 = 2∗Pr∗Re/(Pr+Re),
which is the harmonic mean of precision and recall.

We also compared the outcome of our experiments with the results reported
in [27], obtained using a generative model (i.e., an HMM) and a discriminative
one (i.e., a CRF) in combination with offline inference and the change-point
representation. To make this comparison possible, we sampled the result of our
prediction using a timeslice of duration ∆t = 60 s and we considered two addi-
tional measures: i) accuracy A = 1/N

∑Nc
i=1 TPi, which is the average percentage

of correctly classified timeslices, with N being the total number of timeslices,
Nc the total number of activity classes, and TPi the number of TP of class i;
and, ii) average recall R̄e = 1/Nc

∑Nc
i=1Rei, which is the average percentage of

correctly classified timeslices per class, with Rei being the recall of class i.

4.2 Results

Table 4 shows the confusion matrix for the exponential and the non-Markovian
cases, which reports in position i, j the number of timeslices of class i predicted
as class j; Table 5 shows precision, recall and F1 score as derived from the
confusion matrix. Results show that Idling, Leaving house, and Sleeping are the
activities with the highest F1 score. In terms of F1 score, the non-Markovian
case outperforms the exponential one for all activity classes except for Preparing
a beverage and Taking shower. In terms of precision, the non-Markovian case
performs worse only for Sleeping. Conversely, in terms of recall, the exponential
case outperforms the non-Markovian one for Preparing a beverage, Preparing
breakfast, Taking shower, and Toileting, and performs worse for Idling, Preparing
dinner, and Sleeping. Note that the precision, recall, and F1 score of Leaving
house are identical in both cases.

Accuracy and average recall are summarized in Table 6, and compared with
results from [27]. As we can see, fitting statistical data according to the CV (non-
Markovian case), we achieve the highest accuracy, both w.r.t. our exponential
case and w.r.t. HMM and CRF. Nevertheless, the exponential case, HMM, and
CRF outperform the non-Markovian case in terms of average recall.
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Idling 2975/3471 330/330 37/6 82/16 733/400 588/658 131/65 98/28

Leaving
house

184/209 22219/22219 1/0 0/0 101/56 25/71 22/4 15/8

Preparing
a beverage

8/6 1/1 5/2 0/0 6/11 1/1 0/0 0/0

Preparing
breakfast

5/14 0/0 3/2 39/24 15/22 8/8 0/0 0/0

Preparing
dinner

83/107 0/0 4/1 39/13 214/221 0/0 0/0 1/0

Sleeping 194/215 0/0 0/0 0/0 0/0 11226/11430 3/1 231/8

Taking
shower

94/100 0/0 0/0 0/0 1/1 17/41 105/79 4/0

Toileting 46/60 2/2 0/0 0/0 0/1 36/52 7/8 66/33

Table 4. Confusion matrix showing the number of timeslices of each class i (first
column) predicted as class j (other columns): exponential case/non-Markovian case.
Diagonal elements represent TP, while FN (FP) can be read along rows (columns).

Exponential non-Markovian
Precision Recall F1 Precision Recall F1

Idling 82.89 59.81 69.49 83.00 69.78 75.82

Leaving house 98.52 98.46 98.49 98.52 98.46 98.49

Preparing a beverage 10.00 23.81 14.09 18.18 9.52 12.50

Preparing breakfast 24.38 55.71 33.91 45.28 34.29 39.02

Preparing dinner 20.00 62.76 30.33 31.04 64.62 41.94

Sleeping 94.33 96.33 95.32 93.22 98.08 95.59

Taking shower 39.18 47.51 42.95 50.32 35.75 41.80

Toileting 15.90 42.04 23.08 42.86 21.15 28.33

Table 5. Precision, recall, and F1 score achieved for each activity type.

Accuracy Average recall

Exponential case 92.11 60.80

non-Markovian case 93.69 53.96

HMM [27] 80.00 67.20

CRF [27] 89.40 61.70

Table 6. Accuracy and average recall achieved by the exponential and non-Markovian
cases (dual change-point representation and online analysis), compared with those re-
ported in [27] for HMM and CRF (change-point representation and offline analysis).



14

5 Discussion

Experimentation developed so far achieves results that compare well with the
HMM and CRF approaches, with a slight increase in precision and a slight reduc-
tion in recall. The proposed approach is open to various possible developments,
and the insight on observed cases of success and failure comprises a foundation
for refinement and further research on which we are presently working.

In the present implementation, classification of the current activity relies only
on past events, which is for us instrumental to open the way to the integration
of classification with on-line prediction. However, the assumption of this causal
constraint severely hinders our approach in the comparison against the offline
classification implemented in [27] through HMM and CRF. Online classification
results reported in [27] are unfortunately not comparable due to the different
abstraction applied on events, and it should be remarked that in any case they
are not completely online as the classification at time t relies on all the events
that will be observed within the end of the timeslice that contains t itself, which
makes a difference for short duration activities. For the purposes of comparison,
our online approach can be relaxed to support offline classification by adding a
backtrack from the final states reached by the predictor. This should in particular
help the recall of short activities started by events that can be accepted also as
the beginning of some longer activity (e.g., Preparing a beverage w.r.t. Preparing
dinner). We also expect that this should reduce the number of cases where a time
period is misclassified as Idling.

The statistics of durations are now fitted using the basic technique of [29]
which preserves only expected value and variation coefficient. Moreover, the
deterministic shift introduced in the approximation of hypo-exponential distri-
butions with low CV causes a false negative for all the events occurring before
the shift completion, which is in fact observed in various cases. Approximation
through acyclic Continuous PHase type (CPH) distributions [17, 13, 21] would
remove the problem and allow an adaptable trade-off between accuracy and com-
plexity. In particular, a promising approach seems to be the method of [6] which
permits direct derivation of an acyclic phase type distribution fitting not only
expected value and variation coefficient but also skewness.

Following a different approach, the present implementation is completely
open to the usage of any generally distributed (GEN) representation of activity
durations. This would maintain the underlying stochastic process of the on-
line model within the current class, i.e., Markov Regenerative Processes (MRP)
that run under enabling restriction [10] and guarantee a regeneration within a
bounded number of steps. In this case, on-line prediction could be practically
implemented using various tools, including Oris [12, 7], TimeNet [31] and Great-
SPN [1].

In the present implementation, classification is unaware of the absolute time,
which may instead become crucial to separate similar activities, such as for in-
stance Preparing breakfast and Preparing dinner. To overcome the limitation,
the model should in principle become non-homogeneous, but a good approxima-
tion can be obtained by assuming a discretized partition of the daytime, which



15

can be cast in the on-line model as a sequence of deterministic delays. By ex-
ploiting the timestamps, at each event the current estimation of the absolute
time is restarted. Under the fair assumption that at least one event is observed
in each activity, the underlying stochastic process of the on-line model still falls
in the class of MRPs that encounter a regeneration within a bounded number
of steps, and can thus be practically analyzed through the Oris Tool [12, 7].
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