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Introducing Probability within State Class Analysis
of Dense-Time-Dependent Systems

G.Bucci, R.Piovosi, L.Sassoli, E.Vicario

Abstract

Several techniques have been proposed for symbolic enu-
meration and analysis of the state space of reactive systems
with non-deterministic temporal parameters taking values
within a dense domain. In a large part of these techniques,
the state space is covered by collecting states within equiv-
alence classes each comprised of a discrete logical loca-
tion and a dense variety of clock valuations encoded as a
Difference Bounds Matrix (DBM). The reachability relation
among such classes enables qualitative verification of prop-
erties pertaining the ordering of events along critical runs
and the satisfaction of stimulus/response deadlines. How-
ever, up to now, no results have been proposed which extend
state class enumeration so as to combine the verification of
the possibility of critical behaviors with a quantitative eval-
uation of their probability.

In this paper, we extend the concept of equivalence
classes based on DBM encoding with a density function
which provides a measure for the probability associated
with individual states collected in the class itself. To this
end, we extend the formalism of Time Petri Nets by associ-
ating the static firing interval of each transition with a prob-
ability density function. We then expound how this proba-
bilistic information determines a probability for the states
collected within a class and how this probability evolves
in the enumeration of the reachability relation among state
classes. This opens the way to characterizing the possibility
of critical behaviors with a quantitative measure of proba-
bility.

1 Introduction

Development of reactive and time-dependent systems
jointly addresses requirements pertaining ordered sequenc-
ing of events, stimulus-response timeliness, and efficient
resource usage [21] [31] [29]. Despite this demand
raised by the application domain, modeling and analy-
sis techniques for correctness verification and for perfor-
mance/dependability evaluation have been separately ad-

dressed in different timed variants of Petri Nets [13].

On the one hand, in the context of performance and de-
pendability evaluation, stochastic Petri Nets associate timed
transitions with a stochastic delay characterized through an
exponential density function [26] [1]. This enables Marko-
vian analysis and permits automated derivation of effective
performance and dependability indexes [17]. As a major
drawback, the unbounded support of the exponential dis-
tribution does not permit the modeler to represent implicit
precedences induced by finite timing constraints (e.g. time-
outs).

Several extensions of stochastic Petri Nets have been de-
veloped to encompass bounded delays and to partially over-
come the limits of exponential timing[9][20]. However,
the application of these techniques imposes various restric-
tions which exclude models allowing multiple concurrent
non-exponential clocks [2] [15] [16] [11], or models where
timing constraints are essential to keep the set of reachable
markings finite [27] [10].

On the other hand, in the context of correctness verification
of real time systems, a number of analysis techniques have
been proposed for models such as Timed Automata and
Time Petri Nets which include non-deterministic temporal
parameters taking values within (possibly finite) dense in-
tervals [4][6] [18][7][32]. For this kind of models, the timed
state space is covered through the enumeration of a discrete
reachability relation among state classes, each comprised
of a discrete logical location and a time domain collecting a
dense variety of timings. In particular, a wide literature has
been developed upon state classes where time domains are
encoded as difference bounds matrixes (DBM) [3] [8] [7]
[19] [5]. Enumeration and analysis of the reachability rela-
tion among such state classes opens the way to the solution
of a number of relevant problems, such as the reachability
of a given logical location, the feasibility of a run satisfying
given constraints on the logical sequencing of events and on
their quantitative timing, the evaluation of a tight bound on
the minimum and maximum time that can elapse between
any two events along a symbolic run [7] [6] [24] [32].

However, these techniques do not permit the characteri-
zation of feasible behaviors with a measure of probability,
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which is an essential step towards dependability and per-
formance evaluation. To overcome this limitation, proba-
bilistic extensions of timed automata have been proposed to
enable model checking for probabilistic real time systems
with continuous random delays, allowing the verification of
quantitative probability bounds [23] [12][25].

In this paper, we address the problem of deriving a density
function which characterizes the probability of individual
timings comprised within the boundaries of a time domain
in DBM form. To this end, we extend the formalism of
Time Petri Nets by associating the static firing interval of
each transition with a (dense) probability density function.
We then expound how this probabilistic information induces
a measure of probability for individual states collected in a
class and how this probability evolves in the enumeration of
the reachability relation among state classes.

The rest of the paper is organized in four sections. Time
Petri Nets extended with stochastic time intervals are de-
fined in Sect.2. In Sects.3 and 4, we extend the concept of
state class with a density function capturing the probability
of individual states in the class, we present a method for the
derivation of the successors of a stochastic state class, and
we discuss the application of this derivation within an enu-
merative semi-algorithm. Conclusions are drawn in Sect.5.

2 Time Petri Nets with stochastic firing inter-
vals

A Stochastic Time Petri Net (sTPN) is a tuple

sTPN =< P ;T ;A−;A+;M ;A·;D > (1)

• The first seven members comprise the basic model of
Time Petri Nets: P is a set of places; T a set of
transitions; A− and A+ are sets of preconditions
and postconditions connecting places to transitions and
vice versa, respectively:

A− ⊆ P × T
A+ ⊆ T × P

(2)

A place p is said to be an input or an output place
for a transition t if there exists a precondition or a
postcondition from p to t or vice versa, (i.e. if
< p, t > ∈ A− or < t, p >∈ A+), respectively.
M (the initial marking) associates each place with a
non-negative number of tokens:

M : P → N ∪ {0} (3)

P , T , A−, and A+ comprise a bipartite graph,
P and T being disjoint classes of nodes, and A− and

A+ being relations between them. This graph is repre-
sented graphically by drawing places as circles, transi-
tions as bars, and preconditions and postconditions as
directed arcs; the tokens of the initial marking are rep-
resented as dots inside places.

A· is a set of inhibitor arcs connecting places to tran-
sitions:

A· ⊆ P × T (4)

inhibitor arcs are represented graphically as dot-
terminated arcs.

• D associates each transition t with a static probability
density function Dt (D : T → Ω, where Ω denotes
the space of probability density functions). For each
transition t, the support of Dt represents a static firing
interval, which is made up of an earliest and a (pos-
sibly infinite) latest firing time, called EFT s(t) and
LFT s(t), respectively.

The state of a sTPN is a pair s = 〈M, τ〉, where M is
the marking and τ associates each transition with a possibly
infinite time to fire value ( τ : T → R

+ ∪ {∞}). The
state evolves according to a transition rule made up of two
clauses of firability and firing.

Firability: A transition to is enabled if each of its input
places contains at least one token and none of its inhibiting
places contains any token. A transition to is firable if its
time to fire τ(to) is not higher than the time to fire of any
other progressing transition.

Firing: When a transition to fires, the state s = 〈M, τ〉 is
replaced by a new state s′ = 〈M ′, τ ′〉. The marking M ′ is
derived from M by removing a token from each input place
of to, and by adding a token to each output place of to:

Mtmp(p) = M(p) − 1 ∀p.〈p, to〉 ∈ A−

M ′(p) = Mtmp(p) + 1 ∀p.〈to, p〉 ∈ A+ (5)

Transitions that are enabled both by the temporary mark-
ing Mtmp and by the final marking M ′ are said persistent,
while those that are enabled by M ′ but not by Mtmp are said
newly enabled. If to is still enabled after its own firing, it
is always regarded as newly enabled.

The time to fire τ ′ of any transition enabled by the new
marking M ′ is computed in a different manner for newly
enabled transitions and for persistent transitions:
i) for transition ta which is newly enabled after the firing of
to, the time to fire takes a nondeterministic value sampled in
the static firing interval, according to the static probability
density function fta

(·):
EFT s(ta) ≤ τ ′(ta) ≤ LFT s(ta) (6)

ii) for any transition ti which is persistent after the firing
of to, the time to fire is reduced by the time elapsed in the
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previous state. This is equal to the time to fire of to as it was
measured at the entrance in the previous state:

τ ′(ti) = τ(ti) − τ(to) (7)

3 Augmenting State Class With Probability

3.1 States, State Classes and Stochastic State
Classes

In the firing clause of sTPNs, a newly enabled transi-
tion may take any real value within its static firing interval,
and each value can lead to a different state, thus resulting
in a dense variety of possible successors. To obtain a dis-
crete representation of the state space, the reachability rela-
tion between states is conveniently replaced through some
reachability relation between state classes, each made up
by a dense variety of states with the same marking m but
with different timings comprised within a firing domain Dm

[19][32]:

State class = 〈m,Dm〉 (8)
The encoding of the firing domain Dm jointly depends on
the way in which transition timers are made to advance in
the firing clause and on the semantics of the reachability
relation established among state classes. Most works (and
this among them) on the analysis of densely timed models
are based on the EA reachability relation [28]:

Definition 3.1 class Sc is a successor of class Sp through

to (which is also written as Sp to→ Sc) if and only if Sc con-
tains all and only the states that are reachable from some
states collected in Sp through some feasible firing of to.

Under this reachability relation, the firing domain of state
classes of a TPN model can be represented as the set D
of solutions of a set of linear inequalities in the form of a
Difference Bounds Matrix (DBM) [19]:

D =
{

τ(ti) − τ(tj) ≤ bij

∀ti, tj ∈ T (m) ∪ {t∗} ti �= tj
(9)

where T (m) denotes the set of transitions enabled by m,
τ(ti) denotes the time to fire of transition ti, the fictitious
unknown variable τ(t∗) = 0 serves to keep all the inequal-
ities in the same difference form, and bij ∈ R∪{+∞} are
the coefficients which define the boundaries of a class. The
DBM form has a normal representation which can be com-
puted as the solution of an all shortest path problem, and
which supports efficient detection and derivation of succes-
sor classes, in time O(N) and O(N2) respectively, with re-
spect to the number of enabled transitions [32].

The DBM representation can be applied to encode the range
of feasible timings of an sTPN, as the support of feasi-
ble timings of this model evolves with the same seman-
tics as a TPN. However, this encoding does not exploit

the stochastic information which is introduced in sTPNs
to characterize the probability of different determinations
of temporal parameters. To overcome the limitation,
we introduce a concept of stochastic state class which ex-
tends a state class 〈m,D〉 with a joint probability func-
tion f�τ (·) characterizing the distribution of the vector �τ =
〈τ(t0), τ(t1), . . . τ(tn)〉 of times to fire of transitions en-
abled by m within the limits of the firing domain D:

Stochastic state class = 〈m,D, f�τ (·)〉 (10)

Each determination of �τ uniquely identifies a state in class
S and vice versa. According to this, f�τ (·) takes the meaning
of a density function for the probability of the states in S,
for which we call it state probability density function.

With this perspective, we extend the reachability relation
among state classes as follows:

Definition 3.2 given two stochastic state classes
Σp = 〈mp, Dp, f �τp(·)〉 and Σc = 〈mc, Dc, f �τc(·)〉,
we say that Σc is a successor of Σp through to with

probability μ, and we write Σp to,μ⇒ Σc, iff the following
property holds: if the marking of the net is mp and the
vector of times to fire of transitions enabled by mp is a
random variable �τp distributed within the boundaries of
Dp according to f �τp(·), then to is a possible firing, which
occurs with probability μ and which leads to a new marking
mc and a new vector of times to fire distributed within the
boundaries of Dc according to f �τc(·).
In the following, we develop the steps for the enumeration
of this reachability relation, i.e. the detection of successors,
the calculus of their probability, and the derivation of suc-
cessor state-probability density functions.

3.2 Successors detection and calculus of their
probability

A transition to is an outcoming event from the stochas-
tic class Σp = 〈mp, Dp, f �τp(·)〉 iff to is enabled by the
marking mp and the firing domain Dp accepts solutions in
which the firing time τ(to) of transition to is not greater
than that of any other enabled transition. This occurs iff
the following restricted firing domain Dp

to
accepts a non-

empty set of solutions:

Dp
to

=

⎧⎪⎪⎨
⎪⎪⎩

τ(ti) − τ(tj) ≤ bij

τ(to) − τ(tj) ≤ min{0, boj}

∀ti, tj ∈ T (mp) ∪ {t∗} ti �= tj

(11)

If to is a possible outcoming event, its probability μ is de-
rived by integrating the state density function f �τp(·) over
the restricted firing domain Dp

to
:

μ = Prob{t0 fires first} =
= Prob{�τ ∈ Dp

t0} =
∫

Dp
t0

f �τp(�x) d�x (12)
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3.3 Derivation of successor state-probability den-
sity functions

In the computation of the class Σc = 〈mc, Dc, f�τc(·)〉
reached from Σp = 〈mp, Dp, f�τp(·)〉 through an outcoming

event to (i.e. Σp to,μ⇒ Σc), the new marking mc is derived
by moving tokens according to the execution rule of tran-
sitions, and the firing domain Dc is derived so as to reflect
the evolution of times to fire. Details of the derivation are
reported in [32]. For the present treatment, it is sufficient to
resume the steps of the derivation as follows:

1. the vector of times to fire �τp = 〈τ(to), τ(t1), ...τ(tn)〉
of the transitions enabled in Sp is replaced with the
vector �τ ′ = 〈τ ′(to), τ ′(t1), ...τ ′(tn)〉 where each un-
known value τ ′(ti) is obtained by restricting τ(ti) with
the constraint τ(ti) ≥ τ(to) so as to capture the condi-
tion for to to be the firing transition;

2. �τ ′ is replaced through the vector
�τ ′′ = 〈τ ′′(to), τ ′′(t1), ...τ ′′(tn)〉 =
〈τ ′(to), τ ′(t1) − τ ′(to), ...τ ′(tn) − τ ′(to)〉 so as
to reflect the reduction of times to fire during the
permanence in the parent class Σp;

3. times to fire of enabled transitions at the firing of to
are obtained by eliminating τ(to) from �τ ′′ through a
projection operation which yields a new vector �τ ′′′ =
〈τ ′′′(t1), ...τ ′′′(tn)〉;

4. the vector �τ ′′′′ of times to fire in the child class Σc

is finally obtained by removing through a projection
the times to fire of transitions that are not persistent
after the firing of to and by adding the times to fire of
newly enabled transitions, each constrained within its
own static firing interval.

Derivation of the probability density function within the
boundaries of the firing domain of the child class Σc can be
organized along the same four steps, extending the deriva-
tion of inequalities with a stochastic characterization of
their solution space.

1. We regard �τ = 〈τ(to), τ(t1), ...τ(tn)〉 as a stochas-
tic array variable, and �τ ′ = 〈τ ′(to), τ ′(t1), ...τ ′(tn)〉
as the variable obtained by conditioning �τ through the
assumption that to will fire first, i.e. that τ(to) ≤ τ(ti)
for any enabled transition ti in Σp:

�τ ′ = 〈τ ′(to), . . . τ ′(tn)〉
τ ′(ti) = τ(ti) | τ(to) ≤ τ(ti) ∀i = 1, n (13)

The joint density function of �τ ′ can be expressed
through Bayes Theorem as:

f�τ ′(τ ′
o, ...τ

′
n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f�τ (τ ′
o, ...τ

′
n)∫

Dp
to

f�τ (τo, ...τn)dτo...dτn

if τ ′
o, ...τ

′
n ∈ Dp

to

0 if τ ′
o, τ

′
1, ...τ

′
n /∈ Dp

to

(14)

2. The stochastic array variable �τ ′′ is obtained by replac-
ing each stochastic variable τ ′(ti) with i > 0 through
the difference τ ′(ti) − τ ′(to):

τ ′′(ti) =
{

τ ′(ti) − τ ′(to) ∀i = 1 . . . , n
τ ′(to) for i = 0 (15)

The joint density function f�τ ′′ of the variable �τ ′′ can
be expressed as:

f�τ ′′(τ ′′
o , τ ′′

1 , ...τ ′′
n ) = f�τ ′(τ ′′

o , τ ′′
1 +τ ′′

o , ...τ ′′
n +τ ′′

o ) (16)

3. The stochastic variable �τ ′′′ is derived from �τ ′′ through
a projection eliminating the variable τ ′′(to):

�τ ′′′ = 〈τ ′′(t1), τ ′′(t2), ...τ ′′(tn)〉 (17)

The joint density function f�τ ′′′ is thus be obtained by
integrating the density function f�τ ′′ with respect to
τ ′′(to):

f�τ ′′′(τ ′′′
1 , ...τ ′′′

n ) =
∫

Suo(τ ′′′
1 ,...τ ′′′

n )

f�τ ′′(τ ′′
o , τ ′′′

1 , ...τ ′′′
n )dτ ′′

o (18)

where Suo(τ ′′′
1 , ...τ ′′′

n ) is the support of the unknown
value τ ′′(to) when the tuple 〈τ ′′(t1), ...τ ′′(tn)〉 takes
the value 〈τ ′′

1 , ...τ ′′
n 〉. Being a set in DBM form,

Dp
to

is convex and thus Suo(τ ′′′
1 , ...τ ′′′

n ) is an interval
[Mino(τ ′′′

1 , ...τ ′′′
n ),Maxo(τ ′′′

1 , ...τ ′′′
n )].

By composing Eqs.(18), (16), and (14), we finally ex-
press the joint density function of �τ ′′′ with respect to
that of �τ :

f�τ ′′′(τ ′′′
1 , ...τ ′′′

n ) =

=

∫ Maxo(τ ′′′
1 ,...τ ′′′

n )

Mino(τ ′′′
1 ,...τ ′′′

n )

f�τ (τ ′′
o , τ ′′′

1 + τ ′′
o , ...τ ′′′

n + τ ′′
o )dτ ′′

o∫
Dp

to

f�τ (τo, τ1, ...τn)dτodτ1...dτn

(19)

4. the state probability density function of transitions that
are persistent in the child class Σc can now be obtained
by integrating the density function f�τ ′′′ so as to elim-
inate times to fire of transitions that are not persistent.
Specifically, if t1, ...tm are disabled at the firing, and
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�τ c
pers = 〈tm+1, ...tn〉 is the vector of transitions that

are persistent in the child class, the density function
f�τc

pers
(τm+1, ...τn) is expressed as:

f�τc
pers

(τm+1, ...τn) =

=
∫ +∞

−∞
...

∫ +∞

−∞
f�τ ′′′(τ1, ...τm, τm+1, ...τn)dτ1...dτm

(20)

Finally, the vector �τ ′′′′ collecting the times to fire of
all transitions enabled in the child class is obtained by
extending �τ c

pers with the vector �τ c
new made up by the

times to fire of transitions newly enabled in Σc, each
distributed according to its own static density function.

�τ ′′′′ = 〈�τ c
pers, �τ

c
new〉 (21)

Since the time to fire of any newly enabled transition ta
is independent from the time fire of any other enabled
transition, the joint probability density function f�τ ′′′′

in the firing domain Dc of the child class Σc can be
expressed as the product:

f〈�τc
new,�τc

pers〉( �τ c
new, �τ c

pers) =

f�τc
pers

( �τ c
pers) ·

∏
ta∈�τc

new(Σc)

fta
(τ c(ta))

(22)

3.4 Example

We illustrate the theory in the derivation of a stochastic
class for the example in Fig.1. For the sake of simplicity, we
assume that the firing times of all transitions have a uniform
probability density function over their static firing intervals,
even if the method can be applied to any kind of distribu-
tions.

[2,8] [5,10]

[2,4]

[3,9]

t 2

t 4

t 3

t 1

p
5

p
3

p
6

p
1

p
2

p
4

Figure 1. A stochastic Time Petri Net. All
non-deterministic timings are supposed to be uni-
formly distributed.

Since in the initial class S0 transitions are newly enabled,
their times to fire are all independent. According to this, the
joint probability density function over D0 is obtained as the
product of static probability density functions of individual
transitions:

D0 =

⎧⎨
⎩

5 ≤ τ(t1) ≤ 10
2 ≤ τ(t2) ≤ 8
3 ≤ τ(t3) ≤ 9

f0(τ1, τ2, τ3) =

{
1

180
if (τ1, τ2, τ3) ∈ D0

0 if (τ1, τ2, τ3) /∈ D0

(23)

Three events are possible in the class S0: the firing of tran-
sition t1 in the interval [5,8], t2 in [2,8], and t3 in [3,8]. The
assumption of the case that t3 fires first restricts the firing
domain to Dt3

0 :

Dt3
0 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

5 ≤ τ(t1) ≤ 10
3 ≤ τ(t2) ≤ 8
3 ≤ τ(t3) ≤ 8
τ(t3) ≤ τ(t1)
τ(t3) ≤ τ(t2)

(24)

According to equation (12), the probability Probt3first that
t3 fires first is obtained by integrating fo(τ1, τ2, τ3) over
Dt3

0 :

Probt3first =

∫
D

t3
0

f0(τ1, τ2, τ3)dτ1dτ2dτ3 =
29

90 (25)

The joint probability distribution of firing times conditioned
to the assumption that t3 fires is:

f0|t3first(τ1, τ2, τ3) =

⎧⎨
⎩

f0(τ1,τ2,τ3)
Probt3first

= 1
58

if (τ1, τ2, τ3) ∈ Dt3
0

0 if (τ1, τ2, τ3) /∈ Dt3
0

(26)

The class S1 reached from S0 through the firing of t3 has
two enabled transitions: t1 and t2. Their firing times are
constrained within domain D1 (also pictured in Fig. 3):

D1 =

⎧⎨
⎩

0 ≤ τ(t1) ≤ 7
0 ≤ τ(t2) ≤ 5

−7 ≤ τ(t2) − τ(t1) ≤ 3
(27)

According to Eq.(19), we derive the probability den-
sity function for transitions t1 and t2 by integrating
f0|t3first(τ ′′′

1 + τ ′′
3 , τ ′′′

2 + τ ′′
3 , τ ′′

3 ) with respect to τ ′′
3 .

The function f0|t3first(τ ′′′
1 + τ ′′

3 , τ ′′′
2 + τ ′′

3 , τ ′′
3 ) is

defined over D̂t3
0 , derived from Dt3

0 through variable
substitutions τ ′′(t3) = τ(t3), τ ′′′(t1) = τ(t1) − τ ′′(t3),
τ ′′′(t2) = τ(t2) − τ ′′(t3):

D̂t3
0 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

5 ≤ τ ′′′(t1) − τ ′′(t3) ≤ 10
3 ≤ τ ′′′(t2) − τ ′′(t3) ≤ 8

3 ≤ τ ′′(t3) ≤ 8
τ ′′′(t1) ≥ 0
τ ′′′(t2) ≥ 0

(28)

In order to integrate f0|t3first(τ ′′′
1 + τ ′′

3 , τ ′′′
2 + τ ′′

3 , τ ′′
3 ) with

respect to τ ′′
3 , we must now express the range of variability

of τ ′′(t3) as a function of the values taken by τ ′′′(t1) and
τ ′′′(t2). According to Eqs.(18)-(19), this range is an in-
terval Su3(τ ′′′

1 , τ ′′′
2 ) = [Min3(τ ′′′

1 , τ ′′′
2 ),Max3(τ ′′′

1 , τ ′′′
2 )]

with:

Proceedings of the Second International Conference on the Quantitative Evaluation of Systems (QEST’05) 
0-7695-2427-3/05 $20.00 © 2005 IEEE 



Min3(τ ′′′
1 , τ ′′′

2 ) = min{τ ′′
3 |〈τ ′′′

1 , τ ′′′
2 , τ ′′

3 〉 ∈ D̂t3
0 }

Max3(τ ′′′
1 , τ ′′′

2 ) = max{τ ′′
3 |〈τ ′′′

1 , τ ′′′
2 , τ ′′

3 〉 ∈ D̂t3
0 } (29)

According to Eq.(28), the two extrema can be expressed as:

Min3(τ ′′′
1 , τ ′′′

2 ) = max{5 − τ ′′′
1 , 3 − τ ′′′

2 , 3}
Max3(τ ′′′

1 , τ ′′′
2 ) = min{10 − τ ′′′

1 , 8 − τ ′′′
2 , 8} (30)

This splits the range of values for the pair 〈τ ′′′(t1), τ ′′′(t2)〉
in three sub-regions Za, Zb, Zc within each of which
Min3() and Max3() has homogeneous form (i.e. it is de-
fined through a single non-piecewise function):

Za =

⎧⎨
⎩

2 ≤ τ ′′′(t1) ≤ 7
τ ′′′(t2) ≥ 0
τ ′′′(t1) − τ ′′′(t2) ≥ 2

Zb =

⎧⎨
⎩

2 ≤ τ ′′′(t1) ≤ 7
τ ′′′(t2) ≤ 5
τ ′′′(t1) − τ ′′′(t2) < 2

Zc =

⎧⎨
⎩

0 ≤ τ ′′′(t1) < 2
τ ′′′(t2) ≥ 0

τ ′′′(t1) − τ ′′′(t2) ≥ −3

With reference to this split, we can finally express Min3()
and Max3() as:

Min3(τ ′′′
1 , τ ′′′

2 )=

⎧⎨
⎩

3 if 〈τ ′′′
1 , τ ′′′

2 〉 ∈ Za

3 if 〈τ ′′′
1 , τ ′′′

2 〉 ∈ Zb

5 − τ ′′′
1 if 〈τ ′′′

1 , τ ′′′
2 〉 ∈ Zc

Max3(τ ′′′
1 , τ ′′′

2 )=

⎧⎨
⎩

10 − τ ′′′
1 if 〈τ ′′′

1 , τ ′′′
2 〉 ∈ Za

8 − τ ′′′
2 if 〈τ ′′′

1 , τ ′′′
2 〉 ∈ Zb

8 − τ ′′′
2 if 〈τ ′′′

1 , τ ′′′
2 〉 ∈ Zc

(31)

Fig.2 plots the partitionment for the range of variability of
〈τ ′′′

1 , τ ′′′
2 〉 and the form of Min3() and Max3() in the three

subzones. Note that the procedure of derivation of the sub-
zones where Min3() and Max3() have homogeneous form
is general and it is performed as a step in the symbolic com-
putation of the integral in Eq. (19).
The probability density function for transitions t1 and t2 is
finally derived according to equation (19) and results in a
piecewise function defined over the three zones Za, Zb, Zc

(also shown in Fig. 3).

f1(τ
′′′
1 , τ ′′′

2 )=

⎧⎪⎪⎨
⎪⎪⎩

1
58

(7 − τ ′′′
1 ) if 〈τ ′′′

1 , τ ′′′
2 〉 ∈ Za

1
58

(5 − τ ′′′
2 ) if 〈τ ′′′

1 , τ ′′′
2 〉 ∈ Zb

1
58

(3 + τ ′′′
1 − τ ′′′

2 ) if 〈τ ′′′
1 , τ ′′′

2 〉 ∈ Zc

0 elsewhere

(32)

In the child class S1 reached through t3, both t1 and t2
are persistent. Moreover, no other transition is newly en-
abled. According to this, f1(τ ′′′

1 , τ ′′′
2 ) is the probability den-

sity function for states collected in the state class S1. In the
more complex case of any transition being (newly) enabled
or disabled by the firing of transition t3, we would have to
use equations (20) and (22).

Figure 2. The time domain D̂t3
0 partitioned in

three regions during the calculus of Su3(τ ′′′
1 , τ ′′′

2 );
in the projections Za, Zb, Zc, the bounds of τ ′′(t3)
are both defined by a single homogeneous rule.

Figure 3. The temporal domain D1 and its state
probability density function f1(τ1, τ2). D1 is parti-
tioned in three subzones (a, b and c), representing
the three sub-domains of the piecewise function
f1(τ1, τ2) (see Equation (32)). Note that since the
firing of t3 does not enable or disable any transi-
tion, zones a, b and c of D1 correspond to zones
Za, Zb, Zc reported in Fig. 2.

4 Enumeration

Equations (12) and (22) can be embedded within a ”con-
ventional” algorithm for the enumeration of DBM state
classes (e.g. [32] [8]) so as to derive a graph of reachability
among stochastic state classes of a sTPN.

To this end, algorithms for the detection of class succes-
sors and for the computation of their firing domains must be
combined with a symbolic derivation of integrals, that can
be conveniently supported by a symbolic toolbox. In our
experimentation, we integrate the Oris tool for state class
enumeration [14] and the Wolfram Mathematica 5.1 for the
symbolic calculus [30].

The result of the enumeration of the reachability relation

Σp t,μ⇒ Σc among stochastic state classes Σ = 〈m,D, f�τ (·)〉
is a stochastic timed transition system, that we call stochas-
tic class graph, where nodes are state classes labeled with a
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state density function and edges are transitions labeled with
a measure of probability.

The stochastic class graph can be regarded as a discrete-
time Markov chain Xn with respect to the number n of fired
transitions. The analysis of this structure permits to asso-
ciate a stochastic characterization with symbolic runs iden-
tified in the class graph. In particular, it supports the eval-
uation of such indexes as the probability to reach a logical
location, or the probability that the system executes along
a given run, the probability that a run exceeds a deadline,
the distribution of probabilities for the timing of a symbolic
run.

5

01 7 6

34

2

t 1

t 2

t 3 t 4

t 1

t 2 t 1

t 3

t 2

t 3

t 2

t 1

t 3

Figure 4. The class graph for the net in Fig.1.
Each node is a state class 〈m, D〉 made up of a
marking m and a firing domain D encoded as a
difference bounds matrix.

4.1 Example

Enumeration of the reachability relation Sp t→ Sc

among ”conventional” state classes S = 〈m,D〉 for the net
in Fig.1 yields the state class graph shown in Fig.4. Mark-
ings and time domains for the eight state classes are:

S0 =

1 p4 1 p5 1 p6
5 ≤ τ(t1) ≤ 10
2 ≤ τ(t2) ≤ 8
3 ≤ τ(t3) ≤ 9

S1 =

1 p3 1 p4 1 p5
0 ≤ τ(t1) ≤ 7
0 ≤ τ(t2) ≤ 5

−7 ≤ τ(t2) − τ(t1) ≤ 3

S2 =

1 p2 1 p4 1 p6
0 ≤ τ(t1) ≤ 8
0 ≤ τ(t3) ≤ 7

−7 ≤ τ(t3) − τ(t1) ≤ 4

S3 =
1 p1 1 p5 1 p6
0 ≤ τ(t2) ≤ 3
0 ≤ τ(t3) ≤ 4

S4 =
1 p1 1 p3 1 p5
0 ≤ τ(t2) ≤ 3

S5 =
1 p2 1 p3 1 p4
0 ≤ τ(t1) ≤ 7

S6 =
1 p1 1 p2 1 p6
0 ≤ τ(t3) ≤ 4

S7 =
1 p1 1 p2 1 p3
2 ≤ τ(t4) ≤ 4

When classes are extended with the state density probabil-

ity, we obtain the extended reachability relation Σp to,μ⇒ Σc

among stochastic state classes Σ = 〈m,D, f�τ (·)〉 shown in
Fig. 5. This now includes eleven stochastic state classes as
each of the three state classes S4, S5 and S6 can be reached
under two different state probability density functions (see

Fig. 6), thus corresponding to six stochastic state classes
(Σ4.5, Σ4.8; Σ5.7, Σ5.9; Σ6.4, Σ6.6).

0.01.3 7.10

3.1

2.2

t 1

t 2

t 3 t 4

t 1

t 2

t 1

t 3

t 2

t 3

t 1

t 3

5.7

5.9

4.5

4.8

6.6

6.4

129/90
1

1
t 3

1/3

2/3

69/217

148/217

89/116

27/116

t 2

t 2

1

1

3/40

217/3601

t 1
1

Figure 5. The stochastic class graph for the
net in Fig.1. Each node is a stochastic state
class 〈m, D, f�τ ()〉 made up of a marking m, a fir-
ing domain D encoded as a difference bounds
matrix, and a state density function f�τ () associ-
ating the individual timings within D with a mea-
sure of probability. Edges are labeled with a
measure of probability associated with the tran-
sition. Stochastic state classes are numbered
and positioned so as to make evident their cor-
respondence with the classes in the class graph
of Fig.4: all stochastic classes labeled by x.n have
the marking and the firing domain of class labeled
by x, but they differ in the state density function
f�τ (·).

State density functions for the classes enumerated in the
stochastic class graph of Fig.5 are:

f0.0 =

{
1/180 if 5 ≤ τ1 ≤ 10 ∧ 2 ≤ τ2 ≤ 8 ∧ 3 ≤ τ3 ≤ 9
0 elsewhere

f1.3 =⎧⎪⎪⎨
⎪⎪⎩

1
58 (7 − τ1) if 2 ≤ τ1 ≤ 7 ∧ τ2 ≥ 0 ∧ τ1 − τ2 ≥ 2
1
58 (5 − τ2) if (2 ≤ τ1 ≤ 7 ∧ τ2 ≤ 5 ∧ τ1 − τ2 < 2)
1
58 (3 + τ1 − τ2) if 0 ≤ τ1 < 2 ∧ τ2 ≥ 0 ∧ τ1 − τ2 ≥ −3
0 elsewhere

f2.2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

10
217 if 2 < τ1 ≤ 3 ∧ 2 < τ1 − τ3 ≤ 2
− 2

217 (−8 + τ1) if τ3 > 1 ∧ 3 < τ1 ≤ 8 ∧ τ1 − τ3 ≥ 1
2

217 (3 + τ1) if 0 ≤ τ1 ≤ 2 ∧ 0 ≤ τ3 ≤ 1
− 2

217 (−7 + τ1 − τ3) if (τ1 − τ3 > 2 ∧ τ3 ≥ 0 ∧ 2 < τ1 ≤ 3)
∨(0 ≤ τ3 ≤ 1 ∧ 3 < τ1 ≤ 7)
∨ (τ1 − τ3 ≤ 7 ∧ τ3 ≤ 1 ∧ 7 < τ1 ≤ 8)

2
217 (4 + τ1 − τ3) if (τ1 − τ3 ≥ −4 ∧ τ3 > 1 ∧ 0 ≤ τ1 < 2)

∨ (−4 ≤ τ1 − τ3 ≤ 1 ∧ 2 < τ1 ≤ 3)
− 2

217 (−7 + τ3) if 3 < τ1 ≤ 8 ∧ τ1 − τ3 < 1 ∧ τ3 ≤ 7
0 elsewhere

f3.1 =

⎧⎨
⎩

− 2
27 (−3 + τ2) if 0 ≤ τ2 ≤ 3 ∧ τ3 ≥ 0 ∧ τ2 − τ3 ≥ −1

− 2
27 (−4 + τ3) if 0 ≤ τ2 ≤ 3 ∧ τ2 − τ3 < −1 ∧ τ3 ≤ 4

0 elsewhere
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f6.4 =

⎧⎨
⎩

1
2 if 0 ≤ τ3 < 1
1
18 (16 − 8τ3 + τ2

3 ) if 1 ≤ τ3 ≤ 4
0 elsewhere

f4.5 =

{
1
9 (9 − 6τ2 + τ2

2 ) if 0 ≤ τ2 ≤ 3
0 elsewhere

f6.6 =

⎧⎨
⎩

1
23 (13 − 4τ3) if 0 ≤ τ(t3) < 1
1
69 (40 − 14τ3 + τ2

3 ) if 1 ≤ τ3 ≤ 4
0 elsewhere

f5.7 =

⎧⎪⎪⎨
⎪⎪⎩

1
148 (39 + 6τ1 − τ2

1 ) if 0 ≤ τ1 ≤ 1
1

148 (51 − 6τ1 − τ2
1 )) if 1 < τ1 ≤ 2

1
148 (63 − 16τ1 + τ2

1 ) if 2 < τ1 ≤ 7
0 elsewhere

f4.8 =

{
1
27 (21 − 10τ2 + τ2

2 ) if 0 ≤ τ2 ≤ 3
0 elsewhere

f5.9 =

⎧⎨
⎩

1
89 (21 + 4τ1 − τ2

1 )) if 0 ≤ τ1 < 2
1
89 (49 − 14τ1 + τ2

1 ) if 2 ≤ τ1 ≤ 7
0 elsewhere

f7.10 =

{
1
2 if 2 ≤ τ4 ≤ 4
0 elsewhere

4.2 Boundedness

Due to the extension of the enumeration algorithm with
probabilistic information, the stochastic class graph may in-
clude multiple stochastic classes with the same marking and
domain but with different state density functions.

The problem is related to confluences occurring at state
classes that can be reached through different paths in the
class graph, and it can be clearly illustrated with reference to
the example net of Fig.1. The class graph in Fig.4 contains
a diamond structure made up of four classes S0, S2, S3 and
S6: starting from S0, class S6 can be reached visiting either
S2 (firing transition t1 and then t2), or S3 (vice versa). The
ordering of t1 and t2 does not influence the set of possible
behaviors, but it conditions the distribution of probability in
the times to fire of transitions that are enabled in S6. In the
stochastic class graph of Fig.5, this results in the split of the
state class S6 in two stochastic state classes Σ6.6 and Σ6.4,
as shown in Fig.6.

The break of confluences in the extension from the class
graph to the stochastic class graph not only exacerbates the
problem of state space explosion, but may also result in the
case of a model which accepts a finite class graph but which
has an unbounded stochastic class graph. This condition is
related to the existence of cycles in the class graph and to
the way in which memory is passed among the transitions
that are persistent through the firings along the cycle itself.

The case is demonstrated by the infinite overtaking that
may occur in the net in Fig.7. The class graph of the net con-
tains a self loop in which transition t1 fires and re-enables it-
self leaving t2 persistent. In the construction of the stochas-
tic reachability graph, the class will be encountered infinite
times. In fact, if we assume that t1 and t2 have uniform
distributions, it can be proved by induction that the state
probability density of the stochastic class reached after n
subsequent firings of t1 is equal to:

0

t 1

t 1

t 2

t 2
3

2

6

0.0 3.1 6.4
t 2t 1

0.0 2.2 6.6
t 1t 2

Figure 6. In the class graph of Fig.4, both the
timed sequences S0 : t1, t2 and S0 : t2, t1 lead
to the state class S6 where transition t3 is con-
strained to fire in the interval [0, 4]. In the stochas-
tic class graph of Fig.4, the same sequences yield
two different classes Σ6.4 and Σ6.6; the marking
and the time domain of these classes are equal,
but the state probability density functions are dif-
ferent, reflecting the same range of possibilities
with different probabilities.

fn
�τ (τ1, τ2) =

⎧⎨
⎩

(−1)n(n + 2)(τ2 − 1)n+1 if〈τ1, τ2〉 ∈ [0, 1] × [0, 1]

0 elsewhere

(33)

The example has a clean interpretation: on each firing, tran-
sition t1 re-samples its time to fire within its static firing
interval; whereas t2 always remains persistent and thus ac-
cumulates the conditioning of a growing number of events
in which it has been overtaken by transition t1; according to
this, the density function of t2 becomes more and more con-
centrated around the 0 (it tends to the form of a right-Dirac
function) and the probability that t1 overtakes t2 tends to 0.

It is interesting to note that the accumulation of condi-
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Figure 7. (a) A simple net where the class graph
is finite, but the stochastic class graph is un-
bounded. (b) The class graph of the net includes
loops which results in an unbounded number of
stochastic state classes, with the same marking
and time domain, but with different state probabil-
ity density functions. (c) In the enumeration of the
stochastic class graph, the self loop correspond-
ing to the firing of t1 from class S0 yields an un-
bounded sequence of stochastic classes where
the time to fire of transition t2 is distributed ac-
cording to a polynomial of increasing order. The
picture plots the polynomials generated after 0, 3,
10, and 100 repetitions of the loop.

tioning also occurs along the more elaborate loop in which
transitions t1 and t2 fire alternatively. In this case, enumer-
ation yields an unbounded sequence of different stochastic
classes in which alternatively one of the two transitions is
newly enabled (and thus distributed uniformly according to
its static density), while the other has a density distributed
according to a polynomial of growing order. The form of
polynomials is similar to those of Eq.(33) and can be de-
rived through the same kind of procedure reported in the
Appendix. In this case, what happens is that the firing tran-
sition passes its memory to the persistent one through the
conditioning that derives from the precedence: starting from
the class in which t1 is newly enabled and t2 is distributed
according to a polynomial of order n, the firing of t2 yields
a new stochastic class in which t1 becomes distributed ac-
cording to a polynomial of order n + 1.

This observations suggests that unboundedness in the re-
lation between state classes and their associated stochastic
state classes is related to the presence of cycles in which
each state class has at least one persistent transition that can
inherit the conditioning determined by previous firings. Ac-
cording to this, we introduce the following concept:

Definition 4.1 We call resetting class, a state class in which
all enabled transitions are newly enabled.

By construction, a resetting class is associated with a single
stochastic state class in which the times to fire of all enabled
transitions are independent and each of them is distributed
according to its own static density. This permits to prove
the following:

Theorem 4.1 If G is a finite state class graph in which ev-
ery cyclic path traverses at least one resetting class, then
the stochastic class graph Γ associated with G is also finite.

• Ab absurdo, let Γ be unbounded.
Since each stochastic class Σ ∈ Γ is associated with a class
S ∈ G, there exist a class So ∈ G which is associated with
an unbounded number of stochastic classes.

• This implies that the class graph G includes a cyclic path r
which originates in So, and that the stochastic state graph
includes a stochastic class Σ0

k associated with So, such that,
if ρk is the path in the stochastic class graph corresponding
to r and originating from Σ0

k, then the stochastic class Σ0
k+1

reached from Σ0
k through the path ρk is different than Σ0

k:

r = So to→ S1 t1→ ...
tN−1→ So

ρk = Σ0
k

to,μo
k⇒ Σ1

k

t1,μ1
k⇒ ...

tN−1,μN−1
k⇒ Σ0

k+1

Σ0
k 	= ΣN

k+1

(34)

• Eq.(34) can be easily extended to show that the path ρk+1

which follows the transitions of r starting from the stochastic
class Σ0

k+1 visits a sequence of stochastic classes which are
all different than the corresponding classes visited along the
path ρk:

ρk+1 = Σ0
k+1

to,μo
k+1⇒ Σ1

k

t1,μ1
k+1⇒ ...

tN−1,μN−1
k+1⇒ Σ0

k+1

Σn
k 	= Σn

k+1 ∀n = 0, N − 1
(35)• Since r is a cyclic path, it visits a resetting class, that we

denote as Sn! .

Since Sn! is visited along r, it is also associated with two
stochastic classes Σ

n!
k and Σ

n!
k+1 visited along ρk and ρk+1,

respectively.

According to Eq.(35), Σ
n!
k must be different than Σ

n!
k+1,

which is not possible as Σn!
k and Σn!

k+1 are stochastic classes
associated with the same resetting class.

The condition requested for the application of Theorem 4.1
can be easily checked: to this end, it is sufficient consider-
ing a reduced class graph G− which is derived from G by
removing every resetting class, and then checking whether
G− includes any cycle. The test can be run in linear time
with respect to the size of G and, obviously, without actu-
ally constructing the graph G−. Application of the test gives
a positive result (i.e. no unbounded loops are identified) in
all the examples of TPN reported in [7] [33] [22]. How-
ever, we are actually working on a method which always
guarantee boundedness by approximation of state density
functions.
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5 Conclusions

We have proposed a probabilistic extension of state space
analysis for densely timed systems based on time zones en-
coded through Difference Bounds Matrixes. The approach
extends the concept of state class and its reachability rela-
tion, commonly applied to the analysis of models such as
Time Petri Nets and Timed Automata, by enriching dense
firing domains with a state probability density function.

This result, which is the first extension of DBM state
classes analysis with probabilistic information, comprises
a new approach to bridge the gap between the verification
of the possibility of critical behaviors with a quantitative
evaluation of their probability.
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