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1 Introduction

More and more aspects of our daily life depend heavily on large-scale infrastruc-

tural systems, think of rail and road networks, but also about telecommunication

networks (internet, wired and wireless telephony). Many governments have recently

issued reports on the importance (and vulnerability) of their so-called critical infras-

tructures, e.g., [1,2,3]; an overview can be found in [4]. Over the last few years, the

infrastructure systems and networks that provide gas, water and electricity have

become much more “ICT-based”, implying that their well-operation is becoming

dependent on the correct operation of the supporting ICT. And although the em-

bedded ICT does provide more functionality, it is also often a source of failures, or

the victim of attacks. Nevertheless, it is essential for all these critical infrastructural

systems to survive catastrophic events. In this paper we address approaches towards

so-called “survivability evaluation” of infrastructural systems; our focus thereby lies

on water, gas and electricity infrastructures, infrastructures that used to be run by

municipalities, but now are mostly run by large internationally operating companies.

We note here that the concept of survivability is not restricted to just this class

of infrastructural systems. It is also known for military devices, for example, aircraft

combat survivability, and even in agriculture [5]. The literature is abundant with

different definitions of survivability. For an overview see for example [6,7]. Distinct

definitions stress different aspects of survivability, be it the detection of faults, the

defence against attacks or the recovery from various types of disasters. We will

focus on the behaviour of a system after a disaster has occurred. Note that we

do not introduce a new definition of survivability but state a slightly generalised

version of the one in [8]; it reflects an intuitively appealing view on survivability of

systems but is therefore also quite informal:

Survivability is the ability of a system to recover predefined service levels in a

timely manner after the occurrence of disasters.

A disaster might be any kind of severe disturbance of the infrastructural system, for

example, a power breakdown, a complete or partial cut of communication lines, a

flood, heavy rain or a thunderstorm. The possible causes are manifold and include

purposeful attacks as well as natural disasters like earthquakes or thunderstorms.

A system is survivable if it includes mechanisms to return to normal service

within an acceptable time even though a disaster occurred. What kind of mech-

anisms are used and how they are implemented is not part of the survivability

definition. One possible mechanism to achieve survivability is fault tolerance or any

other form of redundancy [9].

The above definition of survivability does not give at all a precise recipe how to

decide whether a system is survivable or not. To overcome this, many approaches

have been followed in the literature for the quantitative determination of surviv-

ability [10,11,7,12,13]. Most of them are model-based and suggest some measure on

the system (model) behaviour and study its evolution after the occurrence of a dis-

aster. It, thus, is the deliberate decision of the person performing the survivability

evaluation to choose an appropriate measure.

Note that the definition of survivability in essence addresses the evolution of

the system of interest after the occurrence of a disaster. This implies that the
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process leading to a disaster, does not have to be included in the evaluation of

the survivability. This is actually very favourable, as the exact occurrence process

and probabilities are mostly very difficult to establish. In this context, we speak

of so-called GOOD models for survivability, for Given the Occurrence Of Disasters

[13]. In contrast, models in which the disaster occurrence is explicitly modelled, are

called ROOD models, for Random Occurrence Of Disasters.

What is typical for the approaches 10 presented in this paper, is that the appli-

cation field requires some form of hybrid model, taking into account discrete state

components (e.g., for the up/down state of various components, or their mode of

operation), continuous state components (e.g., for the physical issues playing a role),

in combination with both deterministic (e.g., fixed time-outs or deterministic sys-

tem evolution) and stochastic behaviour (e.g., for restoration or repair actives with

random length). This combination makes analytical approaches very challenging,

however, there is a clear need for these, as purely simulation-based approaches are

very costly, sometimes even overly costly, to use in practice. In the remaining part

of the paper, we give a brief introduction into recent approaches on survivability

evaluation of infrastructures for smart water, gas and electricity networks.

The three approaches have quite a lot in common, however, also have remark-

able differences. Two of them (that for gas and electricity) are based on a form of

behavioural decomposition [27] in which the failure (or disaster) handling process

is modelled separately from the performance of the system, through a combination

of a stochastic process describing the failure handling mechanism and steady-state

performance measures of interest, much the same as done in performability evalu-

ation using Markov-reward models [26]. In contrast, in the approach taken for the

water system is truly hybrid, in that the failure handling process and the water

transportation and storage are combined in a single integrated model.

2 Water infrastructure

2.1 Water

Water infrastructures include the production and distribution of drinking water, as

well as the collection and cleaning of sewage water. The main goal of drink water

companies is the reliable supply of high quality water, whereas sewage facilities have

to guarantee that a predefined maximum amount of water can be taken from the

community sewage system and be cleaned and released with acceptable quality.

SCADA (Supervisory Control and Data Analysis) systems are used to remotely

manage treatment and distribution facilities in all phases of operation [65]. They are

used for real-time monitoring and control of the substance (water) quality, optimis-

ing pumps, maintaining reservoir levels, managing distribution systems pressures,

detection of leakages and to ensure the security of facilities. Improperly managed

water networks can result in increased cost and insufficient supply of drinking wa-

ter. Currently, water cleaning facilities are migrating towards unmanned operation,

as human operation can not be guaranteed due to labor laws. The trend towards

10Since this paper has an overview character, more details and mathematical background on these ap-
proaches can be found in other (cited) papers.
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unmanned operation requires even more dependable and survivable systems.

2.2 Modelling approaches

To make the above more concrete, we now focus wastewater-management systems.

Such systems clean water in several chemical and physical cleaning steps, before

it is released. A suitable modelling formalism for such systems needs to take into

account continuous (water tanks, pumps, etc.) and discrete (the setting of valves,

the state of the SCADa system, etc.) quantities, as well as random events (fail-

ure occurrences, repair times, etc.). So-called stochastic hybrid models (SHMs)

combine discrete and continuous variables with stochastics, hence, allow to model

water treatment facilities in a natural way. However, the water treatment plants

we want to consider are by far too large for state-of-the-art approaches that feature

general SHMs. Several formalisms supporting SHMs have been defined [19,25,28],

where each of them is suitable only in some very specific domain, and suffers from

limitations that prevent it from being used in other applications.

Water management systems are characterised by deterministic fluid transporta-

tion, however, with rates that change according to a stochastic process. Hence,

Fluid Stochastic Petri Nets (FSPNs) [25,28] and Piece-wise Deterministic Markov

Processes (PDMPs) [19] appear to be suitable. However, the memory of continuous

variables in PDMPs is lost upon stochastic transitions. Hence, they are not suitable

to model the physical behaviour of fluid critical infrastructures. First and second

order Fluid stochastic Petri nets (FSPNs), cf.[25,29], have a sound mathematical

basis allowing for a completely formalised characterisation of the state-evolution in

terms of differential equations. However, such equations can be solved only when

there are at most one or two continuous variables. Simulation is the only available

alternative when considering larger models [17,24].

2.3 Hybrid Petri-nets with General one-shot Transitions

To tackle the issue of scalability, a new approach based on Hybrid Petri nets [18]

has recently been proposed, where the deterministic evolution is separated from

the stochastic evolution of the system [23], by exploiting the quasi-deterministic be-

haviour of the system under study, given that failure and repair events are stochastic.

Therefore, there are relatively few stochastic transitions, which allows for separating

the deterministic from the stochastic evolution of the system, using a conditioning-

deconditioning argument. This will speed up the reachability analysis and will allow

for a large number of continuous variables in the model, as opposed to previous ap-

proaches.

The Hybrid Petri Net formalism with General one-shot transitions (HPNG) as

proposed in [23] is specifically tailored towards fluid critical infrastructures. It allows

for an arbitrary number of continuous variables (“tanks”) that can be connected via

fluid transitions (“pumps”). These transitions can be controlled by discrete places

that can be connected via deterministic and generally distributed transitions; these

can be used to model the ICT part of the system. Generally distributed transitions

must respect the constraint that they can fire only once during the evolution of the

model: for this reason we call them one-shot transitions. They can be used well to
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Fig. 1. The simplified HPnG model of the sewage system in the city of Enschede

model one-time disasters, or repairs.

[22] introduces a new and efficient algorithm that maps the underlying state-

space onto a plane for all possible firing times of the general transition s and for

all possible system times t. The key idea of the proposed method is that instead

of dealing with infinitely many points in the so-called t− s plane, we can partition

the state space into several regions, such that all points inside one region are asso-

ciated with the same system state. To compute the probability to be in a specific

system state at time τ , it suffices to find all regions intersecting the line t = τ and

decondition the firing time over the intersections.

To compute more complex measures of interest over time, the so-called Stochas-

tic Time Logic (STL) has been proposed in [21], together with efficient model check-

ing procedures that recursively traverse the underlying state space of the hybrid

Petri net model. STL allows to formulate intricate state-based and time-bounded-

until-based properties; the notion of survivability can easily be expressed using the

until operator. Even though the current analysis approach is limited to a single

general one-shot transition, it has been shown in [20] that one can effectively model

and analyse a real sewage treatment facility, as will be shown next.

2.4 Case study

Waste water treatment facilities clean sewage water from households and industry in

several cleaning steps. Such facilities are dimensioned to accommodate a maximum

intake. However, in the case of very bad weather conditions or failures of system

components the system might not suffice to accommodate all waste water. We show

the model of a real waste water treatment facility, situated in the city of Enschede,

the Netherlands, as HPNG and analyse under which circumstances the existing

infrastructure will overflow.

Figure 1 models the various stages of the sewage treatment process in a simplified

manner. We are mainly interested in the capacity of each phase and the average

amount of time the waste water stays in the different phases. We, however, do not

aim at modelling the physical, chemical and biological processes in detail. Then,

for a given failure of the system (at a certain time), we analyse the survivability

of the system for changing weather conditions. Fixing the failure to a specific

time of the day results in a so-called “Given the Occurrence Of Disaster” (GOOD)
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model, allows us to model the repair of the system with the single general one-shot

transition. Since the evaluation method at hand is so quick, it is easily possible to

parametrize the failure time and hence analyse the system thoroughly.

The capacity of the community sewerage system is modelled by an overflow place

denoted Pc (the leftmost “box” in Figure 1), of which the input rate may differ,

depending on the weather conditions. From this tank the water is pumped into the

treatment facility with a maximum rate 12 (transition Tz); in case the input exceeds

the capacity of the place and the intake of the treatment facility, waste water flows

into place Po which models the amount of water in the streets. The primary stage

of the sewage treatment consists of two phases, namely the sand interceptor and the

primary sedimentation tank. The sand interceptor is responsible for filtering solids

like sand from the water. After that, the sewage flows into a large tank, which

is used to settle the sludge, while the lighter material rises to the surface and is

removed, and the remaining water overflows. In the model the sand interceptor is

abstracted by the pump Tz, and the primary sedimentation tank is modelled by the

overflow place Pps.

A sedimentation tank physically separates suspended solids from water using

gravity [16]. While the dirt settles at the ground, cleaned water is forwarded to the

second cleaning stage. This stage consists of several phases for removing chemical

and biological contaminations, modelled by a sequence of continuous transitions and

places, before a secondary sedimentation tank separates the biological material from

the now environment friendly sewage water, that can safely be disposed to surface

water. The second sedimentation tank is modelled by overflow place Pss. The sludge

that settles at the primary and secondary sedimentation tank is accumulated and

forwarded to the sludge treatment stage. There it is thickened to reduce its volume

for easier off-site transport. The sludge from the primary tank is pumped out and

forwarded to the fresh sludge thickener. This is also modelled by an overflow place,

denoted Pft. Sludge is pumped out of the place with a small rate and discharged to

the digestion tank which is considered a very large tank. The overflow is directed to

the filtrate basement. The same procedure is repeated for the accumulated sludge

in the second sedimentation tank.

We now consider a failure in the sand interceptor, Tz, modelled by the determin-

istic transition Tf , firing at deterministic time α (which again could be parametrized

for any value). After the occurrence of a failure, a repair crew will repair the pump,

which takes, on average 2 hours (but that actually follows an exponential distri-

bution). For this case we now investigate the following survivability property Φ

(expressed in the logic STL):

Φ = (xPo < 0.01) U [α,α+30] (mPr = 1),(1)

where, mPr = 1, means that the sand interceptor pump is repaired. This equation

expresses the probability that the overflow tank Po will have a very low level, that is,

there is no overflow, during the 30 hours following the failure, or until it is repaired,

whichever comes first. Here, we have chosen the time bound [α, α + 30] for the

Until operator, since the pump is supposed to be repaired within 30 hours after its

failure. The above formula (1) is typical for a wide variety of survivability measures

of interest. The first term, before the Until operator is called the safety condition,

whereas the one after the Until operator is called therecovery condition.

6



Avritzer et al.

For this scenario, we consider two parameters, the time of failure and the intake

rate. The result is shown in Figure 2. On the x-axis the overall intake rate (leftmost

transition) is varied from 6 to 13, and the y-axis represents different failure occur-

rence times, from α = 30 minutes (0.5 hours) to α = 5 hours (after model start). As

expected, for larger intake rates, the probability for Φ to hold decreases. However,

it is interesting that for a late occurrence of the failure, the probability is lower,

especially for high intake rates. The reason for this is that the effective capacity of

the system is equal to the sum of the cleaning street rate (rate 4), and the fresh

sludge thickener pump rate (rate 1.25), that is, 5.25 in total. Initially, the buffer

Pc is fully filled (capacity 20). Therefore, the buffer is filling up for intake rates

greater than 5.25, hence, a late failure will cause a quicker violation of the safety

condition. For intake rates smaller than 5.25, the buffer Pc is actually emptied with

effective rate On the other hand, for early failures, we have a non-zero survivability

probability, even for high intake rates.

Fig. 2. Probability of holding Φ by parametrizing two factors: intake rate (x-axis) and failure time (y-axis).

2.5 Conclusions

The case study clearly shows the strength of HPNGs in both modelling capabilities

and efficiency of computations, for the application field of critical water infrastruc-

tures, even with the current restriction to a single general one-shot transition. Using

the underlying stochastic time diagram and the new algorithms for model checking

the logic STL, it is possible to analyse the survivability of the system very quickly,

so that full parametric studies can easily be performed.

3 Gas infrastructure

3.1 Gas

Long-range gas transportation is performed through transmission networks (publicly-

owned in some countries), which operate at high-pressure and usually feature redun-

dancy and storage capacity (pipeline, underground, liquefied natural gas) to make
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shortage a very unlikely event. Gas delivery to customers is mostly achieved by

distribution networks (owned by municipalities or private investors), which operate

at lower pressure due to safety issues and leakage control.

In the past, gas transmission, distribution, and retail were usually performed

by a single “vertical” company. Nowadays, the liberalised regulation has produced

a number of independent companies which manage customer service but have no

role in network operation. Hence, the new role of a gas network operator includes

the calculation and publication of technical and available capacity, the allocation of

capacity rights, and the contractual and physical congestion management.

Survivability evaluation has been less investigated for gas networks compared

to electric and telecommunication network systems. However, recently, the subject

is receiving increased attention due to competitive challenges raised by demand-

response control applications, smart monitoring and actuation devices, novel indus-

trial organisation of utilities, and an emphasis on homeland security and service-

ability [30].

3.2 Modelling approaches

Most of the literature on the analysis of gas networks focuses on the fluid-dynamics

perspective, mainly oriented to assess flow rates and pressures across network ele-

ments [31,32,33]. Optimisation of operations has been addressed in various ways,

notably to favour efficient integration within multi-carrier systems combining pro-

visioning of electric and gas power [35,36,37,38]. Stochastic modelling has been

applied in [39] to consider different rates of leakage that may occur in a pipe fault

and thus predict the impact on pressures and flow rates, supporting the planning of

appropriate actions to mitigate risks. In [40], fluid-dynamic analysis of a section of

a real gas network is repeated for different configurations of demand, thus reflecting

the statistics of usage at different hours of the day and in different seasons. The

effects of sequential restoration and constrained network capacity are considered in

[41] to support reliability assessment by deriving average measures of interruption

rate and outage time experienced by end-users, exemplifying the approach on a

small-sized gas network.

3.3 An approach for derivation of transient survivability metrics

The recently proposed approach in [42] addresses quantitative evaluation of the

transient behaviour of a gas distribution networks after the failure of a network

element, i.e., again addressing a so-called GOOD model. Notice that the HPNG

model cannot directly be used in the context of gas networks; the HPNG model

does only address the fluid volume, and (piecewise) constant pump rates; for gas

networks, next to the volume also the pressure should betaken into account. Based

on pressure, also the pumps speeds can change. Temperature is taken to be constant.

Overall, a more advanced modelling and analysis approach is needed for modelling

gas distribution networks.

As a relevant assumption, changes of the operating conditions of the network

due to daily and seasonal demand variations or demand-response mechanisms are

considered independent of the actions taken in reaction to a component failure.

8



Avritzer et al.

This permits a decoupling of the fluid dynamic behaviour of gas from the stochastic

temporal behaviour of recovery actions, yielding two distinct models, while allow-

ing their separate analyses to provide feedback to each other (“co-modelling”). On

the one hand, the fluid dynamics model follows a relatively conventional graph-

theoretical representation of the network topology, supporting well-known tech-

niques for the evaluation of pressures and flow rates under a given configuration

of components and parameters. On the other hand, the failure management model

provides a representation of the different functional behaviours that may occur when

a network component fails.

The fluid dynamic analysis consists of solving a system of non-linear equations

that describes the gas behaviour across the network in terms of pressures at nodes

and mass flow rates in pipes. This is performed through an iterative procedure

based on the Newton-Raphson method, cf. [34]. Setting up and solving such system

of equations has a complexity of O(N+M) and O(N3), respectively, where N is the

number of nodes and M is the number of pipes. The number of sectioning valves

does not affect fluid dynamic analysis. The failure management and recovery process

model is defined as a so-called stochastic Time Petri Net (sTPN) [44] extended

with enabling and flush functions [45] (see Figure 3, lower part), which augment

the modelling convenience without changing the model expressivity nor disrupting

the subsequent analysis. As shown in Figure 3 (upper part), the model structure

can be visualised using the UML activity diagram of recovery actions and turns

out to be independent of the network topology, which makes the model general and

almost guarantees a constant level of complexity of stochastic analysis. In contrast,

stochastic distributions associated with temporal parameters of the model depend

on the specific network under analysis, notably on the failure localisation and the

consequent pressure regulation within the network.

The failure management and recovery process model describes the successive

steps to be taken to recover from a disaster (or failure), in Figure 3 (lower part)

visualised as an sTPN. This model may include concurrently enabled transitions

with non-exponential distributions (possibly with bounded support), which goes

well beyond the limits of the so-called enabling restriction and motivates the use

of the solution technique proposed in [46] to perform transient stochastic analysis.

The analysis method yields the transient probability of each logical state of the

model, which actually corresponds to a specific operating condition of the network.

The complexity of the analysis largely depends on the number of concurrent timers

and on the length of paths between subsequent regenerations. As the structure

of the survivability model is independent of the network topology, also the com-

plexity of stochastic analysis turns out to be independent of the network topology.

Subsequently, these probabilities are aggregated on the basis of the results of fluid

dynamic analysis, which is in fact repeated under different boundary conditions to

assess the service level experienced by each load node in each operating condition

of the network, i.e., after each step of the failure management and recovery pro-

cess that either changes the network topology or the pressure at the supply node.

Hence, for each tangible state in the failure management and recovery process, a

fluid dynamic analysis has to be performed; the results of these are combined with

the transient state probabilities, in much the same way as done for performabil-
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ity evaluation using Markov-reward models [26]. This finally allows us to derive

transient and average availability measures for end-users.

3.4 Case study

To provide a proof of concept of the overall methodology, the approach has been

applied on a small-sized network taken from the literature and shown in Figure 4(a)

[41]. The network is made of a supply node, four load nodes (marked as A through

D) and nine pipes (numbered from 4 to 12). The gas is provided by the supply node,

while the sectioning valve belonging to pipe 9 is kept closed in ordinary operating

conditions. According to this, the gas is supplied radially, so that load nodes A and

B are served by pipes 4 and 6, and 4, 7 and 8, respectively (the “upper branch”),

while load nodes C and D are served by pipes 5, 11 and 12, and 5 and 10, respectively

(the “lower branch”). Without loss of generality, we now focus on failures of pipe

5, as failures of pipes belonging to the so-called network ring leave more load nodes

not served than failures of radial pipes. Table 1 illustrates the results of fluid

dynamic analysis, whereas Figures 4(b,c,d) show the transient metrics derived for

each end-user. Although not reported here, the stochastic analysis also supports

the derivation of the average outage time experienced by load nodes after a pipe

failure. If failure statistics are known, such average availability measures could also

be derived over a longer period of time.

failure management step online served nodes online not served nodes offline nodes

automated detection A,B - C,D

network reconfiguration - A,B,C,D -

pressure regulation step 1 A B,C,D -

pressure regulation step 2 A B,C,D -

pressure regulation step 3 A,B C,D -

pressure regulation step 4 A,B,C,D - -

Table 1
Service level of each load node after each step of the failure management procedure, that changes either

the network topology or the pressure at the supply node, after a failure of pipe 5.

3.5 Conclusions

The approach of [42] supports modelling and evaluation of the transient behaviour

of a gas distribution network after a pipe failure. As a salient feature, the approach

allows the use of non-Markovian transitions that overcome the limits of previous

modelling approaches. This section only shows a small example, however, larger

cases have been addressed in [46,43]. Future work includes relaxing the assump-

tion that recovery actions do not overlap with variations of the network operating

conditions.

4 Smart Grid infrastructure

4.1 Smart Grid

The Smart Grid vision for the generation and distribution of electric power is sus-

tained by favourable tradeoff between the ratio of the increasing power generation,
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Fig. 3. The UML activity diagram of failure management actions (upper) and the corresponding sTPN
specification (lower). In the sTPN, distributions associated with timed transitions refer to the example
discussed in 3.4 (immediate, exponential, and general transitions are represented by thin bars, thick empty
bars, and thick black bars, respectively).

11



Avritzer et al.

supply
node

A

B

C

D

4

5

11

9

10

6
7 8

12

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25 30 35 40 45 50

pr
ob

ab
ili

ty

time

probability that A is not served
probability that B is not served

probability that C and D are not served

(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

pr
ob

ab
ili
ty

time

CDF of the outage time
of nodes C and D

(c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

pr
ob

ab
ili
ty

time

CDF of the completion time of
the failure management process

(d)

Fig. 4. (a) The example gas distribution network; (b) probability that nodes A, B, C, and D are not served
after a failure of pipe 5; (c) CDF of the time during which nodes C and D are not served; (d) completion
time distribution of the failure management process. All times are expressed in hours.

transmission and distribution costs to the decreasing costs of deploying computer

and communication technologies. Therefore, utilities are embarking onto capital in-

vestments that deploy computer and communication technologies to the power grid

with the objective of increasing the overall reliability of power systems. One ob-

jective of these investments is fortification of the grid against inevitable disruptions

caused by weather, as, for instance, exemplified by the very large storm (Sandy)

that recently hit the northeast coast of the United States. Regardless of the source

of disruptions, which could also be the result of attacks, the goal is to mitigate the

effects of failure and prevent cascading blackouts.

Smart grids aim to deploy proven ICT and internet services to the power system.

For example, one approach to power reliability improvement is to dynamically route

power. This is equivalent to dynamic routing protocols in the internet that detect

failed links and automatically re-route over them. This is referred to in smart

grid terminology as failure detection, isolation and restoration (FDIR), whereby

faulty sections of a feeder line are located and isolated, and power is restored to

sections outside the faulty region. Dynamic routing protocols in the Internet are

complemented by dynamic flow control algorithms. In power systems, flow control

is referred to as demand/response. The demand/response feature in power systems

are activated to manage transient variations in the supply-demand power balance

or as a failure recovery mechanism.
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Therefore, the opportunity for improvement of the reliability of power systems

by the deployment of computer and communication technologies has been a topic

of interest to system dependability researchers, see, e.g., [49,51,62,58,52,55]. The

survivability assessment of power grids was first performed in [48,53,57].

4.2 Modelling approaches

Most existing approaches focus on steady-state analysis of power distribution sys-

tems. For example, Brown et al. [49] use an hierarchical Markovian model to

derive classical metrics such as the system average interruption duration index

(SAIDI). Pievatolo et al. [59] presents a model where the components fail according

to independent semi-Markov processes and the restoration times can follow non-

exponential distributions. Using the model, the authors obtain the steady-state

outage duration distribution. Elmakias [51] reviews available applications of Markov

models in power system reliability assessment, focused on steady-state metrics.

Several studies [62,64,60,63] study the impact of adding Distributed Generation

(DG) as a backup source in a power system on reliability metrics such as SAIDI.

Martins and Borges [56] present a model for active distribution systems expansion

planning and assess expansion alternatives using steady state metrics such as SAIDI.

Chopade and Bikdash use graph-theoretic techniques to carry out structural and

functional vulnerability analysis for a smart grid [50]. This study indirectly ad-

dresses survivability through the analysis of vulnerability. On the communication

technology side, Wang et al. [61] evaluate the reliability of wide-area measurement

systems (as part of the monitoring infrastructure of the smart grid) using Marko-

vian models. However, none of these approaches considers transient measures for

survivability. Resilience, defined as the ability of a system to bounce back from a

failure, is a quantitative metric related to survivability. Decision support for phased

recovery of a power grid, based on an analysis of the resilience of the grid throughout

restoration efforts, has been presented in [47].

4.3 A phased-recovery model

Our recently introduced approach [48,57] targets assessment of transient proper-

ties of the power systems accounting for the implications of electro-mechanical and

computer-based strategies to address failures in an integrated manner. In this ap-

proach, we quantify the effect of FDIR behaviour and demand/response function-

ality on survivability metrics, based on extended SAIDI metrics. We assume a

topology as shown in Figure 5, where a feeder line between two substations is par-

titioned into sections that can be isolated by opening recloser devices. In case of a

failure, parts of the feeder line can be powered by the backup substation by opening

the tie switch.

The assessment of complex systems such as the smart grid with numerous ele-

ments and many possible states is highly challenging. The key steps to make our

analysis feasible have been: (i) initial state conditioning: considering survivability

instead of overall reliability metrics, thus conditioning the initial state of our model

to be a failure state, i.e., the use of GOOD models; (ii) state space factorisation:

modelling the system behaviour after the failure of a single given section; and (iii)
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Fig. 5. Failed section (i = 5; blue) and its upstream sections (i+; green) and downstream (i−; red)
(from [48]).
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Fig. 6. Phased recovery model (adapted from [48])

state aggregation: aggregating the state of the sections outside the faulty section.

Figure 5 visualises the state aggregation principle. Consider a failure in section

i = 5. Then, sections 1 to 4 are treated together as the downstream sections (denoted

as i−) and sections 6 to 9 are considered together as the upstream sections (denoted

as i+).

Our approach models the recovery of the system as a Markov chain with reward

rates as illustrated in Figure 6. The states of the model correspond to the different

recovery phases, indicated in the upper part of the figure: failure at section i (blue),

isolation of section i and automated restoration of downstream sections i− (black),

automated restoration of upstream sections i+, and full repair. Each state has a

reward rate, which models the survivability metric of interest. In the following, we

use energy not supplied per hour as reward rate.

Parameters of our model are p, the probability that the communication network
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state 0 – 1 2 3 – 4 5 6

ENS/h 542.27 509.94 542.27 49.50 0.00

Table 2
Choice of reward rates: lower bound on energy not supplied per hour (ENS/h) (from [57]).

is still operational after a section failure; q, the probability that there is sufficient

backup power to supply energy for sections i+; and r, the probability that load

can be successfully reduced in case of insufficient backup power. The time-related

parameters in our model are α, the time to restore the upstream sections, β, the

time to call for demand/response; δ, the time to manually repair the faulty section,

and γ, the time to restore communication.

Finally, we denote with ε the mean time to detect the failure and isolate the

faulty section. Because ε is an order of magnitude smaller than the other intervals

of time considered in this paper, we assume its value to be ε = 0. The average time

spend in state 0 (cf. Figure 6) is therefore also 0; the initial probabilities for states

1,3 and 4 are then equal to pq, p(1− q) and 1− p, respectively.

A final assumption in our model is that the failure of communication and the

load in the sections are independent of the failed section. Additionally, the model

presented here supports a single faulty section only. In ongoing work [57], we are

extending this to multiple failures.

4.4 Case study

In the following, we show a typical case study of applying our method taken from

[57]. The load per section in the topology (cf. Figure 5, based on a feeder line

in Virginia, USA [62]) is input to compute the values of the reward rates at the

different model states, as shown in Table 2. The reward rates are computed based

on data provided by the engineers of the power grid about its topology, taking

into account the load and supply at each section. As the worst-case scenario, we

consider a situation in which section 1 fails, i.e., i = 1, thereby maximising the

demand placed on the backup substation to supply the i+ sections.

Figure 7 (cf. [48]) shows the expected accumulated energy not supplied (EAENS)

by time t, for two cases, namely the case when demand-response is not enabled (left

graphs; r = 0) and demand-response being enabled (right graph; r = 1). Using our

method, changes in different parts of the system, i.e., due to investments, can be

assessed. In the following, we analyse the relation between q and r, as an example.

If q = 0.9, that is, there is a high probability that the backup power suffices for

sections i+, demand response does not have a significant impact on EAENS. In

contrast, if q = 0.1, demand response does play a key role, because sections i+ can

be automatically restored when demand response is effective. The corresponding

plots in Figure 7 (left and right) also demonstrate the significant impact of integrated

demand response on EAENS.

The presented method allows us to quantify how various input parameters affect

the EAENS. In other work, cf. [54,53], we show how these input parameters can be

derived for existing power grids and how investments can be optimised. We have

also applied the approach to a distribution automation benchmark derived from a
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Fig. 7. Expected accumulated energy not supplied until time t, computed using uniformisation (from [48]).

German medium voltage distribution network [53].

4.5 Conclusions

The presented method supports the evaluation of different investment alternatives

to improve survivability in distribution automation power grids.

The results obtained in the case study indicate that the integration of demand

response with failure recovery results in a significant reduction in the amount of

energy not supplied after a failure. In the future our models can serve to quantify

the trade-offs between investment cost and reliability gains. The presented method

is a step towards an holistic approach to guide investment decisions on different

parts of a smart grid infrastructure.

5 Summary and future work

In this paper we provide an overview of three approaches towards the modelling

and analysis of the survivability of smart infrastructures, in particular, gas, water

and electricity networks. As more and more citizens rely on such infrastructures,

adequate means to address such infrastructures, in an efficient model-based way,

become more important. Such means help to make important design trade-offs and

to see whether and where investments are needed to guarantee continuous operation.

From a modelling and analysis perspective, the challenges to tackle lie in:

• handling of discrete and continuous quantities, next to deterministic and random

behaviour;

• dealing with large-scale systems, that is, the ability to deal with large models,

large state spaces, and still provide computationally attractive numerical proce-

dures;

• bridging the gap between the viewpoint of an application-engineer (who focusses

on the application, that is, the gas, water or electricity network), and that of the

modeller and analyser of the models.

The three presented approaches have quite a lot in common, however, also have re-

markable differences. The approaches for smart gas and electricity infrastructures

are based on a form of behavioural decomposition [27] in which the failure (or dis-
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aster) handling process is modelled separately from the performance of the system,

much the same as done in performability evaluation using Markov-reward models

[26]. In contrast, in the approach taken for the water system is truly hybrid, in that

the failure handling process and the water transportation and storage are combined

in a single integrated model. This fully integrated approach has the advantage of

avoiding the approximation due to the behavioural decomposition, however, this

comes at the price of a more limited use of stochastic variables (only one general

stochastic event can be modelled).

In this paper we have only shown small-scale applications of the three recently

developed methods for survivability evaluation. A practical challenge is to team up

with true application engineers, that is, from gas, water and electricity operators,

to come to models for real systems. The final proof of the pudding is in the eating!
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